Rigid, bio-based polyamides from galactaric acid derivatives with elevated glass transition temperatures and their characterization

A comparative study was prepared investigating the synthesis of polyamides using bio-based building blocks derived from sugar beet pulp, namely 2,3:4,5-di-O-methylene-galactarate (GalXH) and 2,3:4,5-di-O-isopropylidene-galactarate (GalXMe) derivatives. Two different approaches towards the synthesis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2017-08, Vol.124, p.252-262
Hauptverfasser: Wróblewska, Aleksandra A., Bernaerts, Katrien V., De Wildeman, Stefaan M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A comparative study was prepared investigating the synthesis of polyamides using bio-based building blocks derived from sugar beet pulp, namely 2,3:4,5-di-O-methylene-galactarate (GalXH) and 2,3:4,5-di-O-isopropylidene-galactarate (GalXMe) derivatives. Two different approaches towards the synthesis of bio-based polyamides were evaluated: melt polycondensation and direct polycondensation in solution via the phosphorylation technique. The polymerization of GalXMe with diamines resulted in polymers with narrow dispersity whereas GalXH gives polyamides with broad dispersity. Kinetic studies were performed to understand the different behavior of GalXH and GalXMe during polycondensation. The GalX monomers were combined with linear, cycloaliphatic and aromatic diamines, which resulted in amorphous polyamides with glass transition temperatures between 50 °C–220 °C. The obtained polyamides were stable at elevated temperatures (i.e. above 300 °C). The hydrolytic stability of the acetal/ketal groups in the GalX polyamides in different acids (e.g. 5% citric acid, 90% formic acid) was investigated and revealed higher acid resistance of GalXH compared to that of GalXMe. Furthermore, the water absorption of the GalX copolymers was compared to commercial polyamide references. [Display omitted] •Partially bio-based and amorphous polyamides from polymerization of GalX acetals/ketals.•Polyamides with elevated glass transition temperatures up to 220 °C.•The structure of the GalX protection influences the monomer reactivity.•GalXH and GalXMe polyamides differ in terms of water absorption and resistance to concentrated acids.
ISSN:0032-3861
1873-2291
DOI:10.1016/j.polymer.2017.07.069