Aromatic thermosetting copolyester nanocomposite foams: High thermal and mechanical performance lightweight structural materials

In this study, we present carbon nanoparticle incorporated high-performance aromatic thermosetting copolyester (ATSP) nanocomposite foams. The ATSP nanocomposite foams were fabricated through a facile solid-state mixing method wherein carboxylic acid and acetoxy-functional group oligomers were initi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2017-08, Vol.123, p.311-320
Hauptverfasser: Bakir, Mete, Meyer, Jacob L., Economy, James, Jasiuk, Iwona
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 320
container_issue
container_start_page 311
container_title Polymer (Guilford)
container_volume 123
creator Bakir, Mete
Meyer, Jacob L.
Economy, James
Jasiuk, Iwona
description In this study, we present carbon nanoparticle incorporated high-performance aromatic thermosetting copolyester (ATSP) nanocomposite foams. The ATSP nanocomposite foams were fabricated through a facile solid-state mixing method wherein carboxylic acid and acetoxy-functional group oligomers were initially combined with chemically pristine carbon nanofillers separately, while in powder form. The mixtures were then subjected to a thermal condensation polymerization reaction in which the constituent oligomers formed the ester backbone of the ATSP matrix and advanced the molecular weight while acetic acid was emitted as the by-product, and generated a porous nanocomposite morphology. As compared to a neat ATSP foam, the nanocomposite foams exhibited a reduced coefficient of thermal expansion by 25% to 75 × 10−6 °C−1. Thermal stability temperature at 5% mass loss was increased by 30 °C exceeding 500 °C. Compressive mechanical strength was enhanced two-fold, reaching 16 MPa along with a nearly doubled fracture strain, which ultimately yielded improved material toughness. [Display omitted] •Facile fabrication of carbon nanofiller incorporated polymer nanocomposite foams.•Homogenous distribution of nanofillers in the matrix enabled via solid state mixing.•Characterization of cure and post-cure behaviors influenced by the nanofillers.•Characterization of thermal expansion, thermal degradation, and compressive strength.
doi_str_mv 10.1016/j.polymer.2017.07.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1956484072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386117306894</els_id><sourcerecordid>1956484072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-980638f4fab760408fcbd89760e00ea6d8e98dc5ad89c69a5aabb30123ee1c9c3</originalsourceid><addsrcrecordid>eNqFUMFKAzEQDaJgrX6CEPC8dbLZ3Wa9SClqhYIXPYc0O9umdDdrkire_HSntHdhyCSZ997wHmO3AiYCRHW_nQx-99NhmOQgphOgknDGRkJNZZbntThnIwCZZ1JV4pJdxbgFgLzMixH7nQXfmeQsTxsMnY-YkuvX3PqDJsaEgfem99Z3g48uIW-96eIDX7j15sgxO276hndoN6Z3lp4DhtbToLfId4RL33g4eUxhb9M-EIR2YnBmF6_ZRUsNb059zD6en97ni2z59vI6ny0zK1WRslpBJVVbtGY1raAA1dpVo2q6IwCaqlFYq8aWhj5tVZvSmNVKgsglorC1lWN2d9Qdgv_ckzG99fvQ00ot6rIqVAHTnFDlEWWDjzFgq4fgOhN-tAB9CFtv9SlsfQhbA5UE4j0eeUgWvhxNo3VI_hsX0CbdePePwh9w_o_F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956484072</pqid></control><display><type>article</type><title>Aromatic thermosetting copolyester nanocomposite foams: High thermal and mechanical performance lightweight structural materials</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bakir, Mete ; Meyer, Jacob L. ; Economy, James ; Jasiuk, Iwona</creator><creatorcontrib>Bakir, Mete ; Meyer, Jacob L. ; Economy, James ; Jasiuk, Iwona</creatorcontrib><description>In this study, we present carbon nanoparticle incorporated high-performance aromatic thermosetting copolyester (ATSP) nanocomposite foams. The ATSP nanocomposite foams were fabricated through a facile solid-state mixing method wherein carboxylic acid and acetoxy-functional group oligomers were initially combined with chemically pristine carbon nanofillers separately, while in powder form. The mixtures were then subjected to a thermal condensation polymerization reaction in which the constituent oligomers formed the ester backbone of the ATSP matrix and advanced the molecular weight while acetic acid was emitted as the by-product, and generated a porous nanocomposite morphology. As compared to a neat ATSP foam, the nanocomposite foams exhibited a reduced coefficient of thermal expansion by 25% to 75 × 10−6 °C−1. Thermal stability temperature at 5% mass loss was increased by 30 °C exceeding 500 °C. Compressive mechanical strength was enhanced two-fold, reaching 16 MPa along with a nearly doubled fracture strain, which ultimately yielded improved material toughness. [Display omitted] •Facile fabrication of carbon nanofiller incorporated polymer nanocomposite foams.•Homogenous distribution of nanofillers in the matrix enabled via solid state mixing.•Characterization of cure and post-cure behaviors influenced by the nanofillers.•Characterization of thermal expansion, thermal degradation, and compressive strength.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2017.07.030</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acetic acid ; Aromatic thermosetting copolyester ; Carbon nanofillers ; Carboxylic acids ; Compressive mechanical strength ; Compressive strength ; Condensates ; Condensation polymerization ; Foams ; Fracture toughness ; Functional groups ; In-situ polymerization ; Mechanical properties ; Molecular weight ; Nanocomposite foam ; Nanocomposites ; Nanoparticles ; Oligomers ; Plastic foam ; Plastic foams ; Polyesters ; Polymerization ; Powder ; Thermal degradation stability ; Thermal expansion ; Thermal stability</subject><ispartof>Polymer (Guilford), 2017-08, Vol.123, p.311-320</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 11, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-980638f4fab760408fcbd89760e00ea6d8e98dc5ad89c69a5aabb30123ee1c9c3</citedby><cites>FETCH-LOGICAL-c384t-980638f4fab760408fcbd89760e00ea6d8e98dc5ad89c69a5aabb30123ee1c9c3</cites><orcidid>0000-0001-9663-4734</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2017.07.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Bakir, Mete</creatorcontrib><creatorcontrib>Meyer, Jacob L.</creatorcontrib><creatorcontrib>Economy, James</creatorcontrib><creatorcontrib>Jasiuk, Iwona</creatorcontrib><title>Aromatic thermosetting copolyester nanocomposite foams: High thermal and mechanical performance lightweight structural materials</title><title>Polymer (Guilford)</title><description>In this study, we present carbon nanoparticle incorporated high-performance aromatic thermosetting copolyester (ATSP) nanocomposite foams. The ATSP nanocomposite foams were fabricated through a facile solid-state mixing method wherein carboxylic acid and acetoxy-functional group oligomers were initially combined with chemically pristine carbon nanofillers separately, while in powder form. The mixtures were then subjected to a thermal condensation polymerization reaction in which the constituent oligomers formed the ester backbone of the ATSP matrix and advanced the molecular weight while acetic acid was emitted as the by-product, and generated a porous nanocomposite morphology. As compared to a neat ATSP foam, the nanocomposite foams exhibited a reduced coefficient of thermal expansion by 25% to 75 × 10−6 °C−1. Thermal stability temperature at 5% mass loss was increased by 30 °C exceeding 500 °C. Compressive mechanical strength was enhanced two-fold, reaching 16 MPa along with a nearly doubled fracture strain, which ultimately yielded improved material toughness. [Display omitted] •Facile fabrication of carbon nanofiller incorporated polymer nanocomposite foams.•Homogenous distribution of nanofillers in the matrix enabled via solid state mixing.•Characterization of cure and post-cure behaviors influenced by the nanofillers.•Characterization of thermal expansion, thermal degradation, and compressive strength.</description><subject>Acetic acid</subject><subject>Aromatic thermosetting copolyester</subject><subject>Carbon nanofillers</subject><subject>Carboxylic acids</subject><subject>Compressive mechanical strength</subject><subject>Compressive strength</subject><subject>Condensates</subject><subject>Condensation polymerization</subject><subject>Foams</subject><subject>Fracture toughness</subject><subject>Functional groups</subject><subject>In-situ polymerization</subject><subject>Mechanical properties</subject><subject>Molecular weight</subject><subject>Nanocomposite foam</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Oligomers</subject><subject>Plastic foam</subject><subject>Plastic foams</subject><subject>Polyesters</subject><subject>Polymerization</subject><subject>Powder</subject><subject>Thermal degradation stability</subject><subject>Thermal expansion</subject><subject>Thermal stability</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUMFKAzEQDaJgrX6CEPC8dbLZ3Wa9SClqhYIXPYc0O9umdDdrkire_HSntHdhyCSZ997wHmO3AiYCRHW_nQx-99NhmOQgphOgknDGRkJNZZbntThnIwCZZ1JV4pJdxbgFgLzMixH7nQXfmeQsTxsMnY-YkuvX3PqDJsaEgfem99Z3g48uIW-96eIDX7j15sgxO276hndoN6Z3lp4DhtbToLfId4RL33g4eUxhb9M-EIR2YnBmF6_ZRUsNb059zD6en97ni2z59vI6ny0zK1WRslpBJVVbtGY1raAA1dpVo2q6IwCaqlFYq8aWhj5tVZvSmNVKgsglorC1lWN2d9Qdgv_ckzG99fvQ00ot6rIqVAHTnFDlEWWDjzFgq4fgOhN-tAB9CFtv9SlsfQhbA5UE4j0eeUgWvhxNo3VI_hsX0CbdePePwh9w_o_F</recordid><startdate>20170811</startdate><enddate>20170811</enddate><creator>Bakir, Mete</creator><creator>Meyer, Jacob L.</creator><creator>Economy, James</creator><creator>Jasiuk, Iwona</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-9663-4734</orcidid></search><sort><creationdate>20170811</creationdate><title>Aromatic thermosetting copolyester nanocomposite foams: High thermal and mechanical performance lightweight structural materials</title><author>Bakir, Mete ; Meyer, Jacob L. ; Economy, James ; Jasiuk, Iwona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-980638f4fab760408fcbd89760e00ea6d8e98dc5ad89c69a5aabb30123ee1c9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acetic acid</topic><topic>Aromatic thermosetting copolyester</topic><topic>Carbon nanofillers</topic><topic>Carboxylic acids</topic><topic>Compressive mechanical strength</topic><topic>Compressive strength</topic><topic>Condensates</topic><topic>Condensation polymerization</topic><topic>Foams</topic><topic>Fracture toughness</topic><topic>Functional groups</topic><topic>In-situ polymerization</topic><topic>Mechanical properties</topic><topic>Molecular weight</topic><topic>Nanocomposite foam</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Oligomers</topic><topic>Plastic foam</topic><topic>Plastic foams</topic><topic>Polyesters</topic><topic>Polymerization</topic><topic>Powder</topic><topic>Thermal degradation stability</topic><topic>Thermal expansion</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakir, Mete</creatorcontrib><creatorcontrib>Meyer, Jacob L.</creatorcontrib><creatorcontrib>Economy, James</creatorcontrib><creatorcontrib>Jasiuk, Iwona</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakir, Mete</au><au>Meyer, Jacob L.</au><au>Economy, James</au><au>Jasiuk, Iwona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aromatic thermosetting copolyester nanocomposite foams: High thermal and mechanical performance lightweight structural materials</atitle><jtitle>Polymer (Guilford)</jtitle><date>2017-08-11</date><risdate>2017</risdate><volume>123</volume><spage>311</spage><epage>320</epage><pages>311-320</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>In this study, we present carbon nanoparticle incorporated high-performance aromatic thermosetting copolyester (ATSP) nanocomposite foams. The ATSP nanocomposite foams were fabricated through a facile solid-state mixing method wherein carboxylic acid and acetoxy-functional group oligomers were initially combined with chemically pristine carbon nanofillers separately, while in powder form. The mixtures were then subjected to a thermal condensation polymerization reaction in which the constituent oligomers formed the ester backbone of the ATSP matrix and advanced the molecular weight while acetic acid was emitted as the by-product, and generated a porous nanocomposite morphology. As compared to a neat ATSP foam, the nanocomposite foams exhibited a reduced coefficient of thermal expansion by 25% to 75 × 10−6 °C−1. Thermal stability temperature at 5% mass loss was increased by 30 °C exceeding 500 °C. Compressive mechanical strength was enhanced two-fold, reaching 16 MPa along with a nearly doubled fracture strain, which ultimately yielded improved material toughness. [Display omitted] •Facile fabrication of carbon nanofiller incorporated polymer nanocomposite foams.•Homogenous distribution of nanofillers in the matrix enabled via solid state mixing.•Characterization of cure and post-cure behaviors influenced by the nanofillers.•Characterization of thermal expansion, thermal degradation, and compressive strength.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2017.07.030</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9663-4734</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2017-08, Vol.123, p.311-320
issn 0032-3861
1873-2291
language eng
recordid cdi_proquest_journals_1956484072
source Access via ScienceDirect (Elsevier)
subjects Acetic acid
Aromatic thermosetting copolyester
Carbon nanofillers
Carboxylic acids
Compressive mechanical strength
Compressive strength
Condensates
Condensation polymerization
Foams
Fracture toughness
Functional groups
In-situ polymerization
Mechanical properties
Molecular weight
Nanocomposite foam
Nanocomposites
Nanoparticles
Oligomers
Plastic foam
Plastic foams
Polyesters
Polymerization
Powder
Thermal degradation stability
Thermal expansion
Thermal stability
title Aromatic thermosetting copolyester nanocomposite foams: High thermal and mechanical performance lightweight structural materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aromatic%20thermosetting%20copolyester%20nanocomposite%20foams:%20High%20thermal%20and%20mechanical%20performance%20lightweight%20structural%20materials&rft.jtitle=Polymer%20(Guilford)&rft.au=Bakir,%20Mete&rft.date=2017-08-11&rft.volume=123&rft.spage=311&rft.epage=320&rft.pages=311-320&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2017.07.030&rft_dat=%3Cproquest_cross%3E1956484072%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956484072&rft_id=info:pmid/&rft_els_id=S0032386117306894&rfr_iscdi=true