Aromatic thermosetting copolyester nanocomposite foams: High thermal and mechanical performance lightweight structural materials
In this study, we present carbon nanoparticle incorporated high-performance aromatic thermosetting copolyester (ATSP) nanocomposite foams. The ATSP nanocomposite foams were fabricated through a facile solid-state mixing method wherein carboxylic acid and acetoxy-functional group oligomers were initi...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 2017-08, Vol.123, p.311-320 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 320 |
---|---|
container_issue | |
container_start_page | 311 |
container_title | Polymer (Guilford) |
container_volume | 123 |
creator | Bakir, Mete Meyer, Jacob L. Economy, James Jasiuk, Iwona |
description | In this study, we present carbon nanoparticle incorporated high-performance aromatic thermosetting copolyester (ATSP) nanocomposite foams. The ATSP nanocomposite foams were fabricated through a facile solid-state mixing method wherein carboxylic acid and acetoxy-functional group oligomers were initially combined with chemically pristine carbon nanofillers separately, while in powder form. The mixtures were then subjected to a thermal condensation polymerization reaction in which the constituent oligomers formed the ester backbone of the ATSP matrix and advanced the molecular weight while acetic acid was emitted as the by-product, and generated a porous nanocomposite morphology. As compared to a neat ATSP foam, the nanocomposite foams exhibited a reduced coefficient of thermal expansion by 25% to 75 × 10−6 °C−1. Thermal stability temperature at 5% mass loss was increased by 30 °C exceeding 500 °C. Compressive mechanical strength was enhanced two-fold, reaching 16 MPa along with a nearly doubled fracture strain, which ultimately yielded improved material toughness.
[Display omitted]
•Facile fabrication of carbon nanofiller incorporated polymer nanocomposite foams.•Homogenous distribution of nanofillers in the matrix enabled via solid state mixing.•Characterization of cure and post-cure behaviors influenced by the nanofillers.•Characterization of thermal expansion, thermal degradation, and compressive strength. |
doi_str_mv | 10.1016/j.polymer.2017.07.030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1956484072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386117306894</els_id><sourcerecordid>1956484072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-980638f4fab760408fcbd89760e00ea6d8e98dc5ad89c69a5aabb30123ee1c9c3</originalsourceid><addsrcrecordid>eNqFUMFKAzEQDaJgrX6CEPC8dbLZ3Wa9SClqhYIXPYc0O9umdDdrkire_HSntHdhyCSZ997wHmO3AiYCRHW_nQx-99NhmOQgphOgknDGRkJNZZbntThnIwCZZ1JV4pJdxbgFgLzMixH7nQXfmeQsTxsMnY-YkuvX3PqDJsaEgfem99Z3g48uIW-96eIDX7j15sgxO276hndoN6Z3lp4DhtbToLfId4RL33g4eUxhb9M-EIR2YnBmF6_ZRUsNb059zD6en97ni2z59vI6ny0zK1WRslpBJVVbtGY1raAA1dpVo2q6IwCaqlFYq8aWhj5tVZvSmNVKgsglorC1lWN2d9Qdgv_ckzG99fvQ00ot6rIqVAHTnFDlEWWDjzFgq4fgOhN-tAB9CFtv9SlsfQhbA5UE4j0eeUgWvhxNo3VI_hsX0CbdePePwh9w_o_F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956484072</pqid></control><display><type>article</type><title>Aromatic thermosetting copolyester nanocomposite foams: High thermal and mechanical performance lightweight structural materials</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bakir, Mete ; Meyer, Jacob L. ; Economy, James ; Jasiuk, Iwona</creator><creatorcontrib>Bakir, Mete ; Meyer, Jacob L. ; Economy, James ; Jasiuk, Iwona</creatorcontrib><description>In this study, we present carbon nanoparticle incorporated high-performance aromatic thermosetting copolyester (ATSP) nanocomposite foams. The ATSP nanocomposite foams were fabricated through a facile solid-state mixing method wherein carboxylic acid and acetoxy-functional group oligomers were initially combined with chemically pristine carbon nanofillers separately, while in powder form. The mixtures were then subjected to a thermal condensation polymerization reaction in which the constituent oligomers formed the ester backbone of the ATSP matrix and advanced the molecular weight while acetic acid was emitted as the by-product, and generated a porous nanocomposite morphology. As compared to a neat ATSP foam, the nanocomposite foams exhibited a reduced coefficient of thermal expansion by 25% to 75 × 10−6 °C−1. Thermal stability temperature at 5% mass loss was increased by 30 °C exceeding 500 °C. Compressive mechanical strength was enhanced two-fold, reaching 16 MPa along with a nearly doubled fracture strain, which ultimately yielded improved material toughness.
[Display omitted]
•Facile fabrication of carbon nanofiller incorporated polymer nanocomposite foams.•Homogenous distribution of nanofillers in the matrix enabled via solid state mixing.•Characterization of cure and post-cure behaviors influenced by the nanofillers.•Characterization of thermal expansion, thermal degradation, and compressive strength.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2017.07.030</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acetic acid ; Aromatic thermosetting copolyester ; Carbon nanofillers ; Carboxylic acids ; Compressive mechanical strength ; Compressive strength ; Condensates ; Condensation polymerization ; Foams ; Fracture toughness ; Functional groups ; In-situ polymerization ; Mechanical properties ; Molecular weight ; Nanocomposite foam ; Nanocomposites ; Nanoparticles ; Oligomers ; Plastic foam ; Plastic foams ; Polyesters ; Polymerization ; Powder ; Thermal degradation stability ; Thermal expansion ; Thermal stability</subject><ispartof>Polymer (Guilford), 2017-08, Vol.123, p.311-320</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 11, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-980638f4fab760408fcbd89760e00ea6d8e98dc5ad89c69a5aabb30123ee1c9c3</citedby><cites>FETCH-LOGICAL-c384t-980638f4fab760408fcbd89760e00ea6d8e98dc5ad89c69a5aabb30123ee1c9c3</cites><orcidid>0000-0001-9663-4734</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2017.07.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Bakir, Mete</creatorcontrib><creatorcontrib>Meyer, Jacob L.</creatorcontrib><creatorcontrib>Economy, James</creatorcontrib><creatorcontrib>Jasiuk, Iwona</creatorcontrib><title>Aromatic thermosetting copolyester nanocomposite foams: High thermal and mechanical performance lightweight structural materials</title><title>Polymer (Guilford)</title><description>In this study, we present carbon nanoparticle incorporated high-performance aromatic thermosetting copolyester (ATSP) nanocomposite foams. The ATSP nanocomposite foams were fabricated through a facile solid-state mixing method wherein carboxylic acid and acetoxy-functional group oligomers were initially combined with chemically pristine carbon nanofillers separately, while in powder form. The mixtures were then subjected to a thermal condensation polymerization reaction in which the constituent oligomers formed the ester backbone of the ATSP matrix and advanced the molecular weight while acetic acid was emitted as the by-product, and generated a porous nanocomposite morphology. As compared to a neat ATSP foam, the nanocomposite foams exhibited a reduced coefficient of thermal expansion by 25% to 75 × 10−6 °C−1. Thermal stability temperature at 5% mass loss was increased by 30 °C exceeding 500 °C. Compressive mechanical strength was enhanced two-fold, reaching 16 MPa along with a nearly doubled fracture strain, which ultimately yielded improved material toughness.
[Display omitted]
•Facile fabrication of carbon nanofiller incorporated polymer nanocomposite foams.•Homogenous distribution of nanofillers in the matrix enabled via solid state mixing.•Characterization of cure and post-cure behaviors influenced by the nanofillers.•Characterization of thermal expansion, thermal degradation, and compressive strength.</description><subject>Acetic acid</subject><subject>Aromatic thermosetting copolyester</subject><subject>Carbon nanofillers</subject><subject>Carboxylic acids</subject><subject>Compressive mechanical strength</subject><subject>Compressive strength</subject><subject>Condensates</subject><subject>Condensation polymerization</subject><subject>Foams</subject><subject>Fracture toughness</subject><subject>Functional groups</subject><subject>In-situ polymerization</subject><subject>Mechanical properties</subject><subject>Molecular weight</subject><subject>Nanocomposite foam</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Oligomers</subject><subject>Plastic foam</subject><subject>Plastic foams</subject><subject>Polyesters</subject><subject>Polymerization</subject><subject>Powder</subject><subject>Thermal degradation stability</subject><subject>Thermal expansion</subject><subject>Thermal stability</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUMFKAzEQDaJgrX6CEPC8dbLZ3Wa9SClqhYIXPYc0O9umdDdrkire_HSntHdhyCSZ997wHmO3AiYCRHW_nQx-99NhmOQgphOgknDGRkJNZZbntThnIwCZZ1JV4pJdxbgFgLzMixH7nQXfmeQsTxsMnY-YkuvX3PqDJsaEgfem99Z3g48uIW-96eIDX7j15sgxO276hndoN6Z3lp4DhtbToLfId4RL33g4eUxhb9M-EIR2YnBmF6_ZRUsNb059zD6en97ni2z59vI6ny0zK1WRslpBJVVbtGY1raAA1dpVo2q6IwCaqlFYq8aWhj5tVZvSmNVKgsglorC1lWN2d9Qdgv_ckzG99fvQ00ot6rIqVAHTnFDlEWWDjzFgq4fgOhN-tAB9CFtv9SlsfQhbA5UE4j0eeUgWvhxNo3VI_hsX0CbdePePwh9w_o_F</recordid><startdate>20170811</startdate><enddate>20170811</enddate><creator>Bakir, Mete</creator><creator>Meyer, Jacob L.</creator><creator>Economy, James</creator><creator>Jasiuk, Iwona</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-9663-4734</orcidid></search><sort><creationdate>20170811</creationdate><title>Aromatic thermosetting copolyester nanocomposite foams: High thermal and mechanical performance lightweight structural materials</title><author>Bakir, Mete ; Meyer, Jacob L. ; Economy, James ; Jasiuk, Iwona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-980638f4fab760408fcbd89760e00ea6d8e98dc5ad89c69a5aabb30123ee1c9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acetic acid</topic><topic>Aromatic thermosetting copolyester</topic><topic>Carbon nanofillers</topic><topic>Carboxylic acids</topic><topic>Compressive mechanical strength</topic><topic>Compressive strength</topic><topic>Condensates</topic><topic>Condensation polymerization</topic><topic>Foams</topic><topic>Fracture toughness</topic><topic>Functional groups</topic><topic>In-situ polymerization</topic><topic>Mechanical properties</topic><topic>Molecular weight</topic><topic>Nanocomposite foam</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Oligomers</topic><topic>Plastic foam</topic><topic>Plastic foams</topic><topic>Polyesters</topic><topic>Polymerization</topic><topic>Powder</topic><topic>Thermal degradation stability</topic><topic>Thermal expansion</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakir, Mete</creatorcontrib><creatorcontrib>Meyer, Jacob L.</creatorcontrib><creatorcontrib>Economy, James</creatorcontrib><creatorcontrib>Jasiuk, Iwona</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakir, Mete</au><au>Meyer, Jacob L.</au><au>Economy, James</au><au>Jasiuk, Iwona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aromatic thermosetting copolyester nanocomposite foams: High thermal and mechanical performance lightweight structural materials</atitle><jtitle>Polymer (Guilford)</jtitle><date>2017-08-11</date><risdate>2017</risdate><volume>123</volume><spage>311</spage><epage>320</epage><pages>311-320</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>In this study, we present carbon nanoparticle incorporated high-performance aromatic thermosetting copolyester (ATSP) nanocomposite foams. The ATSP nanocomposite foams were fabricated through a facile solid-state mixing method wherein carboxylic acid and acetoxy-functional group oligomers were initially combined with chemically pristine carbon nanofillers separately, while in powder form. The mixtures were then subjected to a thermal condensation polymerization reaction in which the constituent oligomers formed the ester backbone of the ATSP matrix and advanced the molecular weight while acetic acid was emitted as the by-product, and generated a porous nanocomposite morphology. As compared to a neat ATSP foam, the nanocomposite foams exhibited a reduced coefficient of thermal expansion by 25% to 75 × 10−6 °C−1. Thermal stability temperature at 5% mass loss was increased by 30 °C exceeding 500 °C. Compressive mechanical strength was enhanced two-fold, reaching 16 MPa along with a nearly doubled fracture strain, which ultimately yielded improved material toughness.
[Display omitted]
•Facile fabrication of carbon nanofiller incorporated polymer nanocomposite foams.•Homogenous distribution of nanofillers in the matrix enabled via solid state mixing.•Characterization of cure and post-cure behaviors influenced by the nanofillers.•Characterization of thermal expansion, thermal degradation, and compressive strength.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2017.07.030</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9663-4734</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2017-08, Vol.123, p.311-320 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_proquest_journals_1956484072 |
source | Access via ScienceDirect (Elsevier) |
subjects | Acetic acid Aromatic thermosetting copolyester Carbon nanofillers Carboxylic acids Compressive mechanical strength Compressive strength Condensates Condensation polymerization Foams Fracture toughness Functional groups In-situ polymerization Mechanical properties Molecular weight Nanocomposite foam Nanocomposites Nanoparticles Oligomers Plastic foam Plastic foams Polyesters Polymerization Powder Thermal degradation stability Thermal expansion Thermal stability |
title | Aromatic thermosetting copolyester nanocomposite foams: High thermal and mechanical performance lightweight structural materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aromatic%20thermosetting%20copolyester%20nanocomposite%20foams:%20High%20thermal%20and%20mechanical%20performance%20lightweight%20structural%20materials&rft.jtitle=Polymer%20(Guilford)&rft.au=Bakir,%20Mete&rft.date=2017-08-11&rft.volume=123&rft.spage=311&rft.epage=320&rft.pages=311-320&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2017.07.030&rft_dat=%3Cproquest_cross%3E1956484072%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956484072&rft_id=info:pmid/&rft_els_id=S0032386117306894&rfr_iscdi=true |