Degradation of industrial azo dye in aqueous solution by heterogeneous Fenton process (fly ash/H2O2)
The aim of this study was to investigate the possibilities and efficiency of heterogeneous Fenton process with the use of fly ash from thermal power plants Kolubara, Serbia, as the catalyst in the degradation of industrial azo dye Zetanyl Rosso B-NG. The effects of various experimental parameters su...
Gespeichert in:
Veröffentlicht in: | Hemijska industrija 2012-01, Vol.66 (4), p.487 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng ; srp |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this study was to investigate the possibilities and efficiency of heterogeneous Fenton process with the use of fly ash from thermal power plants Kolubara, Serbia, as the catalyst in the degradation of industrial azo dye Zetanyl Rosso B-NG. The effects of various experimental parameters such as pH, temperature, concentration of fly ash, the initial concentration of H2O2 and initial concentration of dye on the kinetics and efficiency of decolorization were investigated. Simultaneous leaching of iron from fly ash was monitored. The optimum conditions had been determined, and it was found that decolorization efficiency obtained after 150 min of reaction, was about 98.9%. The optimal parameters were: initial pH = 3; [H2O2]0 = 6 mM; dosage of fly ash = 0.1g/l (for dye concentration of 100 mg/l); temperature = 22 °C. The effectiveness of the applied treatment for mineralization of dye solution was investigated, under optimal conditions determined by the examination of various factors influencing the decolorization process at the specified contact time. The maximum achieved reduction of total organic carbon content was 96.5%. The results indicate that the reuse of fly ash as the catalyst support in •OH production in this process achieves significant efficiency in terms of decolorization, 94.4% and mineralization, 89.6%. Futhermore, fly ash showed adequate stability during the reaction (low iron leaching, concentrations under optimal reaction condition were about 2 mg/l). |
---|---|
ISSN: | 0367-598X 2217-7426 |
DOI: | 10.2298/HEMIND111126113B |