Mining version histories to guide software changes

We apply data mining to version histories in order to guide programmers along related changes: "Programmers who changed these functions also changed..." Given a set of existing changes, the mined association rules 1) suggest and predict likely further changes, 2) show up item coupling that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on software engineering 2005-06, Vol.31 (6), p.429-445
Hauptverfasser: Zimmermann, T., Zeller, A., Weissgerber, P., Diehl, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We apply data mining to version histories in order to guide programmers along related changes: "Programmers who changed these functions also changed..." Given a set of existing changes, the mined association rules 1) suggest and predict likely further changes, 2) show up item coupling that is undetectable by program analysis, and 3) can prevent errors due to incomplete changes. After an initial change, our ROSE prototype can correctly predict further locations to be changed; the best predictive power is obtained for changes to existing software. In our evaluation based on the history of eight popular open source projects, ROSE's topmost three suggestions contained a correct location with a likelihood of more than 70 percent.
ISSN:0098-5589
1939-3520
DOI:10.1109/TSE.2005.72