On the Moore–Gibson–Thompson Equation and Its Relation to Linear Viscoelasticity
We discuss the parallel between the third-order Moore–Gibson–Thompson equation ∂ t t t u + α ∂ t t u - β Δ ∂ t u - γ Δ u = 0 depending on the parameters α , β , γ > 0 , and the equation of linear viscoelasticity ∂ t t u ( t ) - κ ( 0 ) Δ u ( t ) - ∫ 0 ∞ κ ′ ( s ) Δ u ( t - s ) d s = 0 for the par...
Gespeichert in:
Veröffentlicht in: | Applied mathematics & optimization 2017-12, Vol.76 (3), p.641-655 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We discuss the parallel between the third-order Moore–Gibson–Thompson equation
∂
t
t
t
u
+
α
∂
t
t
u
-
β
Δ
∂
t
u
-
γ
Δ
u
=
0
depending on the parameters
α
,
β
,
γ
>
0
,
and the equation of linear viscoelasticity
∂
t
t
u
(
t
)
-
κ
(
0
)
Δ
u
(
t
)
-
∫
0
∞
κ
′
(
s
)
Δ
u
(
t
-
s
)
d
s
=
0
for the particular choice of the exponential kernel
κ
(
s
)
=
a
e
-
b
s
+
c
with
a
,
b
,
c
>
0
. In particular, the latter model is shown to exhibit a preservation of regularity for a certain class of initial data, which is unexpected in presence of a general memory kernel
κ
. |
---|---|
ISSN: | 0095-4616 1432-0606 |
DOI: | 10.1007/s00245-016-9365-1 |