Characteristics of CeO2-ZrO2 mixed oxide prepared by continuous hydrothermal synthesis in supercritical water as support of Rh catalyst for catalytic reduction of NO by CO
CeO2-ZrO2 mixed oxides were prepared by continuous hydrothermal synthesis in supercritical water (supercritical synthesis) and co-precipitation method, respectively, and they were used as support for Rh catalyst. The activities of Rh-loaded CeO2-ZrO2 catalysts were investigated for catalytic reducti...
Gespeichert in:
Veröffentlicht in: | Journal of catalysis 2009-04, Vol.263 (1), p.123-133 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | CeO2-ZrO2 mixed oxides were prepared by continuous hydrothermal synthesis in supercritical water (supercritical synthesis) and co-precipitation method, respectively, and they were used as support for Rh catalyst. The activities of Rh-loaded CeO2-ZrO2 catalysts were investigated for catalytic reduction of NO by CO and their physicochemical properties were characterized with TPR, N2 adsorption, O2-uptake, XRD, Raman, SEM, AES, and H2/CO chemisorption. Discussions were made on the differences in the catalytic performances between the two preparation methods of CeO2-ZrO2 supports in terms of reducibility, homogeneity, morphology, Rh dispersion, and thermal stability. Rh-loaded CeO2-ZrO2 prepared by supercritical synthesis showed superior performances for the catalytic reduction of NO by CO as well as better reducibility and higher thermal stability, compared with co-precipitation method, due to its sparsely-agglomerated morphology. CeO2-ZrO2 mixed oxide prepared by supercritical synthesis had more potential applications as catalyst support mainly due to its sparsely-agglomerated morphology and higher thermal stability. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0021-9517 1090-2694 |
DOI: | 10.1016/j.jcat.2009.02.001 |