ON THE DISTRIBUTION OF THE LARGEST REAL EIGENVALUE FOR THE REAL GINIBRE ENSEMBLE
Let $\sqrt{\mathrm{N}}+{\mathrm{\lambda }}_{\mathrm{max}}$ be the largest real eigenvalue of a random N × N matrix with independent N(0, 1) entries (the "real Ginibre matrix"). We study the large deviations behaviour of the limiting N → ∞ distribution ℙ[λmax < t] of the shifted maximal...
Gespeichert in:
Veröffentlicht in: | The Annals of applied probability 2017-06, Vol.27 (3), p.1395-1413 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $\sqrt{\mathrm{N}}+{\mathrm{\lambda }}_{\mathrm{max}}$ be the largest real eigenvalue of a random N × N matrix with independent N(0, 1) entries (the "real Ginibre matrix"). We study the large deviations behaviour of the limiting N → ∞ distribution ℙ[λmax < t] of the shifted maximal real eigenvalue λmax. In particular, we prove that the right tail of this distribution is Gaussian: for t > 0, $\mathrm{\mathbb{P}}[{\mathrm{\lambda }}_{\mathrm{max}} |
---|---|
ISSN: | 1050-5164 2168-8737 |
DOI: | 10.1214/16-AAP1233 |