Constraints on paleofluid sources using the clumped-isotope thermometry of carbonate veins from the SAFOD (San Andreas Fault Observatory at Depth) borehole

The San Andreas Fault Observatory at Depth (SAFOD), near Parkfield, California, is a borehole drilled through two active deforming zones of the San Andreas fault, the Southwest Deforming Zone (SDZ) and the Central Deforming Zone (CDZ). These zones accommodate displacement by seismic slip and aseismi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tectonophysics 2016-10, Vol.690, p.174-189
Hauptverfasser: Luetkemeyer, P. Benjamin, Kirschner, David L., Huntington, Katharine W., Chester, Judith S., Chester, Frederick M., Evans, James P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The San Andreas Fault Observatory at Depth (SAFOD), near Parkfield, California, is a borehole drilled through two active deforming zones of the San Andreas fault, the Southwest Deforming Zone (SDZ) and the Central Deforming Zone (CDZ). These zones accommodate displacement by seismic slip and aseismic creep. Elevated fluid pressures and fluid–rock interactions have been proposed to explain the low apparent strength and aseismic creep observed, but the origin of the fluids and existence of high fluid pressures remains uncertain. We use clumped-isotope thermometry and δ18O–δ13C compositions of calcite in veins to constrain the origin of paleofluids and compare these results to the isotopic composition of modern-day pore fluids from the SAFOD borehole and nearby areas. We observe that: (1) calcite vein temperatures vary from 81 to 134°C, which overlaps the current ambient borehole temperatures of 110–115 °C at sampled depths; (2) vein calcite is not in carbon isotope equilibrium with modern-day pore fluids; (3) the δ18O values of paleofluids close to the SDZ and CDZ, calculated from vein δ18O and temperature data, are not in equilibrium with local modern-day pore waters but approach equilibrium with modern pore waters far from these zones; and (4) syntectonic vein calcite is only in C- and O-isotopic equilibrium with their host rocks within the SDZ and CDZ. Spatial patterns of δ18O and δ13C show little evidence for across-fault fluid-flow. Clumped isotope temperatures are consistent with locally-derived fluid sources, but not with continuous or episodic replenishment of fluids from shallow sedimentary brines or deep fluid sources. Our findings are compatible with flow of meteoric fluids from the southwestern damage zone into the SDZ and CDZ, which would have favored the formation of weak phyllosilicates and contributed to the present day weakness of the two actively deforming zones. •Clumped-isotope thermometry of calcite veins of the SAFOD borehole•Calcite vein growth temperatures vary from 81 to 134°C.•Infiltration of meteoric fluids into actively-deforming zones•Meteoric fluids could favor formation of low-strength phyllosilicate fault rocks.
ISSN:0040-1951
1879-3266
DOI:10.1016/j.tecto.2016.05.024