Global optimization for optimal power flow over transmission networks
The optimal power flow (OPF) problem for power transmission networks is an NP-hard optimization problem with nonlinear constraints on complex bus voltages. The existing nonlinear solvers may fail in yielding a feasible point. Semi-definite relaxation (SDR) could provide the global solution only when...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2017-11, Vol.69 (3), p.745-760 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The optimal power flow (OPF) problem for power transmission networks is an NP-hard optimization problem with nonlinear constraints on complex bus voltages. The existing nonlinear solvers may fail in yielding a feasible point. Semi-definite relaxation (SDR) could provide the global solution only when the matrix solution of the relaxed semi-definite program (SDP) is of rank-one, which does not hold in general. Otherwise, the point found by SDR is infeasible. High-order SDR has recently been used to find the global solution, which leads to explosive growth of the matrix variable dimension and semi-definite constraints. Consequently, it is suitable only for OPF over very small networks with a few buses. In this paper, we follow our previously developed nonsmooth optimization approach to address this difficult OPF problem, which is an iterative process to generate a sequence of improved points that converge to a global solution in many cases. Each iteration calls an SDP of moderate dimension. Simulations are provided to demonstrate the efficiency of our approach. |
---|---|
ISSN: | 0925-5001 1573-2916 |
DOI: | 10.1007/s10898-017-0538-5 |