Global optimization for optimal power flow over transmission networks

The optimal power flow (OPF) problem for power transmission networks is an NP-hard optimization problem with nonlinear constraints on complex bus voltages. The existing nonlinear solvers may fail in yielding a feasible point. Semi-definite relaxation (SDR) could provide the global solution only when...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2017-11, Vol.69 (3), p.745-760
Hauptverfasser: Shi, Y., Tuan, H. D., Tuy, H., Su, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The optimal power flow (OPF) problem for power transmission networks is an NP-hard optimization problem with nonlinear constraints on complex bus voltages. The existing nonlinear solvers may fail in yielding a feasible point. Semi-definite relaxation (SDR) could provide the global solution only when the matrix solution of the relaxed semi-definite program (SDP) is of rank-one, which does not hold in general. Otherwise, the point found by SDR is infeasible. High-order SDR has recently been used to find the global solution, which leads to explosive growth of the matrix variable dimension and semi-definite constraints. Consequently, it is suitable only for OPF over very small networks with a few buses. In this paper, we follow our previously developed nonsmooth optimization approach to address this difficult OPF problem, which is an iterative process to generate a sequence of improved points that converge to a global solution in many cases. Each iteration calls an SDP of moderate dimension. Simulations are provided to demonstrate the efficiency of our approach.
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-017-0538-5