Non-dominated sorting procedure for Pareto dominance ranking on multicore CPU and/or GPU

Evolutionary multi-objective optimization algorithms aim at finding an approximation of the Pareto set. For hard to solve problems with many conflicting objectives, the number of functions evaluations to represent the Pareto front can be large and time consuming. Parallel computing can reduce the wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2017-11, Vol.69 (3), p.607-627
Hauptverfasser: Ortega, G., Filatovas, E., Garzón, E. M., Casado, L. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 627
container_issue 3
container_start_page 607
container_title Journal of global optimization
container_volume 69
creator Ortega, G.
Filatovas, E.
Garzón, E. M.
Casado, L. G.
description Evolutionary multi-objective optimization algorithms aim at finding an approximation of the Pareto set. For hard to solve problems with many conflicting objectives, the number of functions evaluations to represent the Pareto front can be large and time consuming. Parallel computing can reduce the wall-clock time of such algorithms. Previous studies tackled the parallelization of a particular evolutionary algorithm. In this research, we focus on improving one of the most time consuming procedures—the non-dominated sorting—, which is used in the state-of-the-art multi-objective genetic algorithms. Here, three parallel versions of the non-dominated sorting procedure are developed: (1) a multicore (based on Pthreads); (2) a Graphic Processing Unit (GPU) (based on CUDA interface); and (3) a hybrid (based on Pthreads and CUDA). The user can select the most suitable option to efficiently compute the non-dominated sorting procedure depending on the available hardware. Results show that the use of GPU computing provides a substantial improvement in terms of performance. The hybrid approach has the best performance when a good load balance is established among cores and GPU.
doi_str_mv 10.1007/s10898-016-0468-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1953069544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718416848</galeid><sourcerecordid>A718416848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-7ed67f1f0a4ff043f9e30d168abd195c96becc953155db71a5250549f025ff853</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMoWKsP4G7AddqbmWQmWZaiVSjahQV3Ic1PmdpJajKz8O1NGRduJIsL4Zx7Pz6E7gnMCEAzTwS44BhIjYHWHDcXaEJYU-FSkPoSTUCUDDMAco1uUjoAgOCsnKCP1-CxCV3rVW9NkULsW78vTjFoa4ZoCxdisVHR9qEYMa9tEZX_PGPBF91w7FsdMrncbAvlzTwLq832Fl05dUz27ndO0fbp8X35jNdvq5flYo11xViPG2vqxhEHijoHtHLCVmBIzdXOEMG0qHdWa8EqwpjZNUSxkgGjwkHJnOOsmqKHcW-O_DXY1MtDGKLPJ2X2K6gFozRTs5Haq6OVrXehj0rnZ2yX03vr2vy_aAin-TblWSCjoGNIKVonT7HtVPyWBOS5cTk2LnPj8ty4bLJTjk7KrN_b-CfKv9IP5FiCvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1953069544</pqid></control><display><type>article</type><title>Non-dominated sorting procedure for Pareto dominance ranking on multicore CPU and/or GPU</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ortega, G. ; Filatovas, E. ; Garzón, E. M. ; Casado, L. G.</creator><creatorcontrib>Ortega, G. ; Filatovas, E. ; Garzón, E. M. ; Casado, L. G.</creatorcontrib><description>Evolutionary multi-objective optimization algorithms aim at finding an approximation of the Pareto set. For hard to solve problems with many conflicting objectives, the number of functions evaluations to represent the Pareto front can be large and time consuming. Parallel computing can reduce the wall-clock time of such algorithms. Previous studies tackled the parallelization of a particular evolutionary algorithm. In this research, we focus on improving one of the most time consuming procedures—the non-dominated sorting—, which is used in the state-of-the-art multi-objective genetic algorithms. Here, three parallel versions of the non-dominated sorting procedure are developed: (1) a multicore (based on Pthreads); (2) a Graphic Processing Unit (GPU) (based on CUDA interface); and (3) a hybrid (based on Pthreads and CUDA). The user can select the most suitable option to efficiently compute the non-dominated sorting procedure depending on the available hardware. Results show that the use of GPU computing provides a substantial improvement in terms of performance. The hybrid approach has the best performance when a good load balance is established among cores and GPU.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-016-0468-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Central processing units ; Classification ; Computer Science ; Computing time ; CPUs ; Evolutionary algorithms ; Genetic algorithms ; Graphics processing units ; Mathematical optimization ; Mathematics ; Mathematics and Statistics ; Multiple objective analysis ; Operations Research/Decision Theory ; Optimization ; Parallel processing ; Pareto optimization ; Pareto optimum ; Real Functions ; Sorting algorithms</subject><ispartof>Journal of global optimization, 2017-11, Vol.69 (3), p.607-627</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Journal of Global Optimization is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-7ed67f1f0a4ff043f9e30d168abd195c96becc953155db71a5250549f025ff853</citedby><cites>FETCH-LOGICAL-c355t-7ed67f1f0a4ff043f9e30d168abd195c96becc953155db71a5250549f025ff853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-016-0468-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-016-0468-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ortega, G.</creatorcontrib><creatorcontrib>Filatovas, E.</creatorcontrib><creatorcontrib>Garzón, E. M.</creatorcontrib><creatorcontrib>Casado, L. G.</creatorcontrib><title>Non-dominated sorting procedure for Pareto dominance ranking on multicore CPU and/or GPU</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>Evolutionary multi-objective optimization algorithms aim at finding an approximation of the Pareto set. For hard to solve problems with many conflicting objectives, the number of functions evaluations to represent the Pareto front can be large and time consuming. Parallel computing can reduce the wall-clock time of such algorithms. Previous studies tackled the parallelization of a particular evolutionary algorithm. In this research, we focus on improving one of the most time consuming procedures—the non-dominated sorting—, which is used in the state-of-the-art multi-objective genetic algorithms. Here, three parallel versions of the non-dominated sorting procedure are developed: (1) a multicore (based on Pthreads); (2) a Graphic Processing Unit (GPU) (based on CUDA interface); and (3) a hybrid (based on Pthreads and CUDA). The user can select the most suitable option to efficiently compute the non-dominated sorting procedure depending on the available hardware. Results show that the use of GPU computing provides a substantial improvement in terms of performance. The hybrid approach has the best performance when a good load balance is established among cores and GPU.</description><subject>Algorithms</subject><subject>Central processing units</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Computing time</subject><subject>CPUs</subject><subject>Evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Graphics processing units</subject><subject>Mathematical optimization</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multiple objective analysis</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Parallel processing</subject><subject>Pareto optimization</subject><subject>Pareto optimum</subject><subject>Real Functions</subject><subject>Sorting algorithms</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1KAzEURoMoWKsP4G7AddqbmWQmWZaiVSjahQV3Ic1PmdpJajKz8O1NGRduJIsL4Zx7Pz6E7gnMCEAzTwS44BhIjYHWHDcXaEJYU-FSkPoSTUCUDDMAco1uUjoAgOCsnKCP1-CxCV3rVW9NkULsW78vTjFoa4ZoCxdisVHR9qEYMa9tEZX_PGPBF91w7FsdMrncbAvlzTwLq832Fl05dUz27ndO0fbp8X35jNdvq5flYo11xViPG2vqxhEHijoHtHLCVmBIzdXOEMG0qHdWa8EqwpjZNUSxkgGjwkHJnOOsmqKHcW-O_DXY1MtDGKLPJ2X2K6gFozRTs5Haq6OVrXehj0rnZ2yX03vr2vy_aAin-TblWSCjoGNIKVonT7HtVPyWBOS5cTk2LnPj8ty4bLJTjk7KrN_b-CfKv9IP5FiCvw</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Ortega, G.</creator><creator>Filatovas, E.</creator><creator>Garzón, E. M.</creator><creator>Casado, L. G.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20171101</creationdate><title>Non-dominated sorting procedure for Pareto dominance ranking on multicore CPU and/or GPU</title><author>Ortega, G. ; Filatovas, E. ; Garzón, E. M. ; Casado, L. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-7ed67f1f0a4ff043f9e30d168abd195c96becc953155db71a5250549f025ff853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Central processing units</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Computing time</topic><topic>CPUs</topic><topic>Evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Graphics processing units</topic><topic>Mathematical optimization</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multiple objective analysis</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Parallel processing</topic><topic>Pareto optimization</topic><topic>Pareto optimum</topic><topic>Real Functions</topic><topic>Sorting algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ortega, G.</creatorcontrib><creatorcontrib>Filatovas, E.</creatorcontrib><creatorcontrib>Garzón, E. M.</creatorcontrib><creatorcontrib>Casado, L. G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ortega, G.</au><au>Filatovas, E.</au><au>Garzón, E. M.</au><au>Casado, L. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-dominated sorting procedure for Pareto dominance ranking on multicore CPU and/or GPU</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>69</volume><issue>3</issue><spage>607</spage><epage>627</epage><pages>607-627</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>Evolutionary multi-objective optimization algorithms aim at finding an approximation of the Pareto set. For hard to solve problems with many conflicting objectives, the number of functions evaluations to represent the Pareto front can be large and time consuming. Parallel computing can reduce the wall-clock time of such algorithms. Previous studies tackled the parallelization of a particular evolutionary algorithm. In this research, we focus on improving one of the most time consuming procedures—the non-dominated sorting—, which is used in the state-of-the-art multi-objective genetic algorithms. Here, three parallel versions of the non-dominated sorting procedure are developed: (1) a multicore (based on Pthreads); (2) a Graphic Processing Unit (GPU) (based on CUDA interface); and (3) a hybrid (based on Pthreads and CUDA). The user can select the most suitable option to efficiently compute the non-dominated sorting procedure depending on the available hardware. Results show that the use of GPU computing provides a substantial improvement in terms of performance. The hybrid approach has the best performance when a good load balance is established among cores and GPU.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-016-0468-7</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-5001
ispartof Journal of global optimization, 2017-11, Vol.69 (3), p.607-627
issn 0925-5001
1573-2916
language eng
recordid cdi_proquest_journals_1953069544
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Central processing units
Classification
Computer Science
Computing time
CPUs
Evolutionary algorithms
Genetic algorithms
Graphics processing units
Mathematical optimization
Mathematics
Mathematics and Statistics
Multiple objective analysis
Operations Research/Decision Theory
Optimization
Parallel processing
Pareto optimization
Pareto optimum
Real Functions
Sorting algorithms
title Non-dominated sorting procedure for Pareto dominance ranking on multicore CPU and/or GPU
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A18%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-dominated%20sorting%20procedure%20for%20Pareto%20dominance%20ranking%20on%20multicore%20CPU%20and/or%20GPU&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Ortega,%20G.&rft.date=2017-11-01&rft.volume=69&rft.issue=3&rft.spage=607&rft.epage=627&rft.pages=607-627&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-016-0468-7&rft_dat=%3Cgale_proqu%3EA718416848%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1953069544&rft_id=info:pmid/&rft_galeid=A718416848&rfr_iscdi=true