Non-dominated sorting procedure for Pareto dominance ranking on multicore CPU and/or GPU

Evolutionary multi-objective optimization algorithms aim at finding an approximation of the Pareto set. For hard to solve problems with many conflicting objectives, the number of functions evaluations to represent the Pareto front can be large and time consuming. Parallel computing can reduce the wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2017-11, Vol.69 (3), p.607-627
Hauptverfasser: Ortega, G., Filatovas, E., Garzón, E. M., Casado, L. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Evolutionary multi-objective optimization algorithms aim at finding an approximation of the Pareto set. For hard to solve problems with many conflicting objectives, the number of functions evaluations to represent the Pareto front can be large and time consuming. Parallel computing can reduce the wall-clock time of such algorithms. Previous studies tackled the parallelization of a particular evolutionary algorithm. In this research, we focus on improving one of the most time consuming procedures—the non-dominated sorting—, which is used in the state-of-the-art multi-objective genetic algorithms. Here, three parallel versions of the non-dominated sorting procedure are developed: (1) a multicore (based on Pthreads); (2) a Graphic Processing Unit (GPU) (based on CUDA interface); and (3) a hybrid (based on Pthreads and CUDA). The user can select the most suitable option to efficiently compute the non-dominated sorting procedure depending on the available hardware. Results show that the use of GPU computing provides a substantial improvement in terms of performance. The hybrid approach has the best performance when a good load balance is established among cores and GPU.
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-016-0468-7