Growth of oxide particles in FeCrAl- oxide dispersion strengthened steels at high temperature

The growth of oxide particles in FeCrAl- oxide dispersion strengthened steel (ODSS) considering an accident condition of the light-water reactor at above 1500 K was studied by using a high-temperature annealing. Oxide particles grew from 9 nm to more than 50 nm as maximum at 1623 K for 27 h, with de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2017-09, Vol.493, p.180-188
Hauptverfasser: Oono, N.H., Ukai, S., Hayashi, S., Ohtsuka, S., Kaito, T., Kimura, A., Torimaru, T., Sakamoto, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The growth of oxide particles in FeCrAl- oxide dispersion strengthened steel (ODSS) considering an accident condition of the light-water reactor at above 1500 K was studied by using a high-temperature annealing. Oxide particles grew from 9 nm to more than 50 nm as maximum at 1623 K for 27 h, with decreasing their number density in two orders of magnitude. Most of the oxide particles in 15Cr-7Al were identified as YAM or YAP, while the oxide particles in 15Cr-7Al-0.4Zr were identified trigonal Y4Zr3O12. Zr addition to 15Cr-7Al ODSS accelerated the growth of the oxide particles, which is quite contrary to the effect of Zr addition during sintering as suggested in the literature. The kinetics of coarsening was characterized by an equation of Ostwald ripening. The diffusion activation energies obtained in the present materials were quite larger than the conventional diffusion activation energy of Y in alpha-iron. Gibbs free energy of oxides should be considered to discuss the coarsening.
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2017.06.018