Effects of pH on the kinetic reaction
In most cases, kinetic unfolding reactions of proteins follow a simple one-step mechanism that does not involve any detectable intermediates. One example for a more complicated unfolding reaction is the acid-induced denaturation of holo-myoglobin (hMb). This reaction proceeds through a transient int...
Gespeichert in:
Veröffentlicht in: | Journal of the American Society for Mass Spectrometry 2000-04, Vol.11 (4), p.312-319 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In most cases, kinetic unfolding reactions of proteins follow a simple one-step mechanism that does not involve any detectable intermediates. One example for a more complicated unfolding reaction is the acid-induced denaturation of holo-myoglobin (hMb). This reaction proceeds through a transient intermediate and can be described by a sequential two-step mechanism (Konermann et al. Biochemistry 1997, 36, 6448-6454). Time-resolved electrospray ionization mass spectrometry (ESI MS) is a new technique for monitoring the kinetics of protein folding and unfolding in solution. Different protein conformations can be distinguished by the different charge state distributions that they generate during ESI. At the same time this technique allows monitoring the loss or binding of noncovalent protein ligands. In this work, time-resolved ESI MS is used to study the dependence of the kinetic unfolding mechanism of hMb on the specific solvent conditions used in the experiment. It is shown that hMb unfolds through a short-lived intermediate only at acidic pH. Under basic conditions no intermediate is observed. These findings are confirmed by the results of optical stopped-flow absorption experiments. This appears to be the first time that a dependence of the kinetic mechanism for protein unfolding on external conditions such as pH has been observed. |
---|---|
ISSN: | 1044-0305 1879-1123 |
DOI: | 10.1016/S1044-0305(99)00149-X |