On the Relationship Between the Multiplicities of Eigenvalues in Finite- and Infinite-Dimensional Problems on Graphs
It is shown that some results concerning the multiplicities of eigenvalues of the spectral problem that describes small transverse vibrations of a star graph of Stieltjes strings and the multiplicities of the eigenvalues of tree-patterned matrices can be used for the description of possible multipli...
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2017-09, Vol.69 (4), p.521-533 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that some results concerning the multiplicities of eigenvalues of the spectral problem that describes small transverse vibrations of a star graph of Stieltjes strings and the multiplicities of the eigenvalues of tree-patterned matrices can be used for the description of possible multiplicities of the normal eigenvalues (bound states) of the Sturm–Liouville operator on a star graph. |
---|---|
ISSN: | 0041-5995 1573-9376 |
DOI: | 10.1007/s11253-017-1379-6 |