On the Relationship Between the Multiplicities of Eigenvalues in Finite- and Infinite-Dimensional Problems on Graphs

It is shown that some results concerning the multiplicities of eigenvalues of the spectral problem that describes small transverse vibrations of a star graph of Stieltjes strings and the multiplicities of the eigenvalues of tree-patterned matrices can be used for the description of possible multipli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2017-09, Vol.69 (4), p.521-533
Hauptverfasser: Boyko, O. P., Martynyuk, O. M., Pivovarchik, V. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is shown that some results concerning the multiplicities of eigenvalues of the spectral problem that describes small transverse vibrations of a star graph of Stieltjes strings and the multiplicities of the eigenvalues of tree-patterned matrices can be used for the description of possible multiplicities of the normal eigenvalues (bound states) of the Sturm–Liouville operator on a star graph.
ISSN:0041-5995
1573-9376
DOI:10.1007/s11253-017-1379-6