On the extremal values of the eccentric distance sum of trees with a given domination number
Let G be a simple connected graph. The eccentric distance sum (EDS) of G is defined as ξd(G)=∑v∈VεG(v)DG(v), where εG(v) is the eccentricity of the vertex v and DG(v)=∑u∈VdG(u,v) is the sum of all distances from the vertex v. In this paper, the extremal tree among n-vertex trees with domination numb...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2017-10, Vol.229, p.113-120 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a simple connected graph. The eccentric distance sum (EDS) of G is defined as ξd(G)=∑v∈VεG(v)DG(v), where εG(v) is the eccentricity of the vertex v and DG(v)=∑u∈VdG(u,v) is the sum of all distances from the vertex v. In this paper, the extremal tree among n-vertex trees with domination number γ satisfying 4≤γ |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2017.04.032 |