On the extremal values of the eccentric distance sum of trees with a given domination number

Let G be a simple connected graph. The eccentric distance sum (EDS) of G is defined as ξd(G)=∑v∈VεG(v)DG(v), where εG(v) is the eccentricity of the vertex v and DG(v)=∑u∈VdG(u,v) is the sum of all distances from the vertex v. In this paper, the extremal tree among n-vertex trees with domination numb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2017-10, Vol.229, p.113-120
Hauptverfasser: Miao, Lianying, Pang, Shiyou, Liu, Fang, Wang, Eryan, Guo, Xiaoqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a simple connected graph. The eccentric distance sum (EDS) of G is defined as ξd(G)=∑v∈VεG(v)DG(v), where εG(v) is the eccentricity of the vertex v and DG(v)=∑u∈VdG(u,v) is the sum of all distances from the vertex v. In this paper, the extremal tree among n-vertex trees with domination number γ satisfying 4≤γ
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2017.04.032