Effect of current connection to the anode nozzle on plasma torch efficiency

Experiments have been performed to demonstrate the influence of the location of the electric power connection to the anode nozzle on the efficiency of DC plasma torches. The DC plasma torch used in these experiments offers the flexibility to work with different anode geometries and the possibility o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Transactions on Plasma Science 1997-10, Vol.25 (5), p.864-871
Hauptverfasser: Collares, M.P., Pfender, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Experiments have been performed to demonstrate the influence of the location of the electric power connection to the anode nozzle on the efficiency of DC plasma torches. The DC plasma torch used in these experiments offers the flexibility to work with different anode geometries and the possibility of connecting the electrical power to the anode at two different locations. For each set of experiments, the controllable parameters such as total gas flow rate, gas composition, and electric current were kept constant, changing only the location of the electrical connection to the anode nozzle. The efficiency of the torch, derived from a conventional energy balance, shows a significant change as the location of the electrical connection to the anode nozzle is changed. The measured mean voltage as well as the amplitude of the voltage fluctuations were also affected by the location of the electrical connection to the anode nozzle. An explanation for the arc behavior is given, based on an analysis of the forces acting on the anode arc column and their influeuce on the variation of the arc column length. Experimental data are in good agreement with analytical predictions.
ISSN:0093-3813
1939-9375
DOI:10.1109/27.649582