High-dimensional simultaneous inference with the bootstrap
We propose a residual and wild bootstrap methodology for individual and simultaneous inference in high-dimensional linear models with possibly non-Gaussian and heteroscedastic errors. We establish asymptotic consistency for simultaneous inference for parameters in groups G , where p ≫ n , s 0 = o (...
Gespeichert in:
Veröffentlicht in: | Test (Madrid, Spain) Spain), 2017-12, Vol.26 (4), p.685-719 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a residual and wild bootstrap methodology for individual and simultaneous inference in high-dimensional linear models with possibly non-Gaussian and heteroscedastic errors. We establish asymptotic consistency for simultaneous inference for parameters in groups
G
, where
p
≫
n
,
s
0
=
o
(
n
1
/
2
/
{
log
(
p
)
log
(
|
G
|
)
1
/
2
}
)
and
log
(
|
G
|
)
=
o
(
n
1
/
7
)
, with
p
the number of variables,
n
the sample size and
s
0
the sparsity. The theory is complemented by many empirical results. Our proposed procedures are implemented in the R-package hdi (Meier et al. hdi: high-dimensional inference. R package version 0.1-6,
2016
). |
---|---|
ISSN: | 1133-0686 1863-8260 |
DOI: | 10.1007/s11749-017-0554-2 |