High-dimensional simultaneous inference with the bootstrap

We propose a residual and wild bootstrap methodology for individual and simultaneous inference in high-dimensional linear models with possibly non-Gaussian and heteroscedastic errors. We establish asymptotic consistency for simultaneous inference for parameters in groups G , where p ≫ n , s 0 = o (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Test (Madrid, Spain) Spain), 2017-12, Vol.26 (4), p.685-719
Hauptverfasser: Dezeure, Ruben, Bühlmann, Peter, Zhang, Cun-Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a residual and wild bootstrap methodology for individual and simultaneous inference in high-dimensional linear models with possibly non-Gaussian and heteroscedastic errors. We establish asymptotic consistency for simultaneous inference for parameters in groups G , where p ≫ n , s 0 = o ( n 1 / 2 / { log ( p ) log ( | G | ) 1 / 2 } ) and log ( | G | ) = o ( n 1 / 7 ) , with p the number of variables, n the sample size and s 0 the sparsity. The theory is complemented by many empirical results. Our proposed procedures are implemented in the R-package hdi (Meier et al. hdi: high-dimensional inference. R package version 0.1-6, 2016 ).
ISSN:1133-0686
1863-8260
DOI:10.1007/s11749-017-0554-2