Hemophilia Gene Therapy: Ready for Prime Time?
Hemophilia A and B are congenital, X-linked bleeding disorders caused by mutations in the genes encoding for the blood clotting factor VIII (FVIII) or factor IX (FIX), respectively. Since the beginning of gene therapy, hemophilia has been considered an attractive disease target that served as a trai...
Gespeichert in:
Veröffentlicht in: | Human gene therapy 2017-11, Vol.28 (11), p.1013-1023 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hemophilia A and B are congenital, X-linked bleeding disorders caused by mutations in the genes encoding for the blood clotting factor VIII (FVIII) or factor IX (FIX), respectively. Since the beginning of gene therapy, hemophilia has been considered an attractive disease target that served as a trailblazer for the field at large. Different technologies have been explored to efficiently and safely deliver the therapeutic FVIII and FIX genes into the patients' cells. Currently, the most promising vectors for hemophilia gene therapy are adeno-associated viral vectors (AAVs) and lentiviral vectors. More recently, gene editing approaches based on designer nucleases or CRISPR/Cas, have also been considered to minimize risks associated with random vector integration and insertional mutagenesis though off-target issues would have to be carefully and comprehensively assessed. In the past two decades, several phase 1 hemophilia gene therapy clinical trials have been initiated with varying success. In particular, the early gene therapy clinical trials in hemophilia B patients based on AAV showed either transient or subtherapeutic clotting factor expression levels. This could be ascribed, at least in part, to suboptimal vector design and/or inadvertent immune consequences triggering hepatic inflammation. Hence, there was an unmet need to further increase vector safety and efficacy in future trials, preferably by using lower vector doses. It is particularly encouraging that sustained therapeutic FVIII and FIX expression levels have recently been attained after gene therapy in patients with severe hemophilia paving the way towards pivotal trials and commercialization. Nevertheless, transient liver toxicity still occurs and the use of transient immunosuppression was still required to curtail inadvertent immune responses, especially at high vector doses. To further boost clotting factor expression levels, codon-usage optimized synthetic FVIII or FIX transgenes have been employed. Alternatively, we and others have shown that the incorporation of hyperactive gain-of-function R338L mutation in the FIX gene substantially increased the overall efficacy. It is inevitable that the continued improvements in vector engineering and new insights in the vector-patient interactions will further benefit the development of a safe and effective cure for hemophilia A and B. |
---|---|
ISSN: | 1043-0342 1557-7422 |
DOI: | 10.1089/hum.2017.116 |