The comprehensive effect of surface texture and roughness under hydrodynamic and mixed lubrication conditions
A theoretical study is carried out to investigate the comprehensive effect of the machined roughness and fabricated textures, by solving the average Reynolds equation coupled with a mass-conservative cavitation algorithm and taking into account asperity contact. We analyzed the influence of surface...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part J, Journal of engineering tribology Journal of engineering tribology, 2017-10, Vol.231 (10), p.1307-1319 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A theoretical study is carried out to investigate the comprehensive effect of the machined roughness and fabricated textures, by solving the average Reynolds equation coupled with a mass-conservative cavitation algorithm and taking into account asperity contact. We analyzed the influence of surface roughness, which is represented by the combined root-mean-square roughness σ and surface pattern parameter γ on the optimum texture parameters including the dimple depth-over-diameter ratio and area density under hydrodynamic and mixed lubrication conditions. The results show that the effect of surface roughness on load-carrying capacity can be ignored under hydrodynamic lubrication condition. Furthermore, the optimum texture parameters under hydrodynamic lubrication condition and the optimum dimple depth-over-diameter ratio under mixed lubrication condition are determined at minimized friction coefficient, which can be taken as the same for smooth-textured surface and rough-textured surface. The corresponding minimum friction coefficient increases with increasing σ and γ, and decreasing dimple area density under mixed lubrication condition. |
---|---|
ISSN: | 1350-6501 2041-305X |
DOI: | 10.1177/1350650117693146 |