Conforming approximation of convex functions with the finite element method

We consider the interior approximation of convex functions with convex finite element functions. The main motivation for this study is the investigation of a novel discretization of optimization problems with convexity constraints by the finite element method. Under a mild assumption on the family o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2017-11, Vol.137 (3), p.741-772
1. Verfasser: Wachsmuth, Gerd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the interior approximation of convex functions with convex finite element functions. The main motivation for this study is the investigation of a novel discretization of optimization problems with convexity constraints by the finite element method. Under a mild assumption on the family of meshes, we show that the conforming approximation is convergent if the finite elements are at least piecewise quadratic. We further provide similar results under additional constraints on the function values or on the gradient. The theoretical findings are illustrated by numerical examples.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-017-0884-8