On the construction of gradient Ricci soliton warped product

In this paper we show that an expanding or steady gradient Ricci soliton warped product Bn×fFm, m>1, whose warping function f reaches both maximum and minimum must be a Riemannian product. Moreover, we present a necessary and sufficient condition for constructing a gradient Ricci soliton warped p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2017-09, Vol.161, p.30-43
Hauptverfasser: Feitosa, F.E.S., Freitas Filho, A.A., Gomes, J.N.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43
container_issue
container_start_page 30
container_title Nonlinear analysis
container_volume 161
creator Feitosa, F.E.S.
Freitas Filho, A.A.
Gomes, J.N.V.
description In this paper we show that an expanding or steady gradient Ricci soliton warped product Bn×fFm, m>1, whose warping function f reaches both maximum and minimum must be a Riemannian product. Moreover, we present a necessary and sufficient condition for constructing a gradient Ricci soliton warped product. As an application, we present a class of expanding Ricci soliton warped product having as a fiber an Einstein manifold with non-positive scalar curvature. We also discuss some obstructions to this construction, especially in the case when the base of the warped product is compact.
doi_str_mv 10.1016/j.na.2017.05.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1949613389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X17301554</els_id><sourcerecordid>1949613389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-4e35eb63a93f91c915099a22443cf23a98b932082bd042b027627201c07c2ea93</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3jwHPu06STXYjXqT4BYWCKHgL2WxWs9SkJqnif29KvXoamHm_mXkPoXMCNQEiLqfa65oCaWvgNRB2gGaka1nFKeGHaAZM0Io34vUYnaQ0ARQlEzN0vfI4v1tsgk85bk12weMw4reoB2d9xk_OGIdTWLtcJt86buyANzEMRXuKjka9Tvbsr87Ry93t8-KhWq7uHxc3y8owSnPVWMZtL5iWbJTESMJBSk1p0zAz0tLueskodLQfoKE90FbQtlgx0BpqCzVHF_u95e7n1qasprCNvpxURDZSEMa6nQr2KhNDStGOahPdh44_ioDaZaQm5bXaZaSAq5JRQa72iC3ffzkbVTLFtbGDi9ZkNQT3P_wLkMlsLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949613389</pqid></control><display><type>article</type><title>On the construction of gradient Ricci soliton warped product</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Feitosa, F.E.S. ; Freitas Filho, A.A. ; Gomes, J.N.V.</creator><creatorcontrib>Feitosa, F.E.S. ; Freitas Filho, A.A. ; Gomes, J.N.V.</creatorcontrib><description>In this paper we show that an expanding or steady gradient Ricci soliton warped product Bn×fFm, m&gt;1, whose warping function f reaches both maximum and minimum must be a Riemannian product. Moreover, we present a necessary and sufficient condition for constructing a gradient Ricci soliton warped product. As an application, we present a class of expanding Ricci soliton warped product having as a fiber an Einstein manifold with non-positive scalar curvature. We also discuss some obstructions to this construction, especially in the case when the base of the warped product is compact.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2017.05.013</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Curvature ; Mathematical analysis ; Nonlinear equations ; Obstructions ; Ricci soliton ; Rigidity results ; Scalar curvature ; Warped product</subject><ispartof>Nonlinear analysis, 2017-09, Vol.161, p.30-43</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-4e35eb63a93f91c915099a22443cf23a98b932082bd042b027627201c07c2ea93</citedby><cites>FETCH-LOGICAL-c322t-4e35eb63a93f91c915099a22443cf23a98b932082bd042b027627201c07c2ea93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2017.05.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Feitosa, F.E.S.</creatorcontrib><creatorcontrib>Freitas Filho, A.A.</creatorcontrib><creatorcontrib>Gomes, J.N.V.</creatorcontrib><title>On the construction of gradient Ricci soliton warped product</title><title>Nonlinear analysis</title><description>In this paper we show that an expanding or steady gradient Ricci soliton warped product Bn×fFm, m&gt;1, whose warping function f reaches both maximum and minimum must be a Riemannian product. Moreover, we present a necessary and sufficient condition for constructing a gradient Ricci soliton warped product. As an application, we present a class of expanding Ricci soliton warped product having as a fiber an Einstein manifold with non-positive scalar curvature. We also discuss some obstructions to this construction, especially in the case when the base of the warped product is compact.</description><subject>Curvature</subject><subject>Mathematical analysis</subject><subject>Nonlinear equations</subject><subject>Obstructions</subject><subject>Ricci soliton</subject><subject>Rigidity results</subject><subject>Scalar curvature</subject><subject>Warped product</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt3jwHPu06STXYjXqT4BYWCKHgL2WxWs9SkJqnif29KvXoamHm_mXkPoXMCNQEiLqfa65oCaWvgNRB2gGaka1nFKeGHaAZM0Io34vUYnaQ0ARQlEzN0vfI4v1tsgk85bk12weMw4reoB2d9xk_OGIdTWLtcJt86buyANzEMRXuKjka9Tvbsr87Ry93t8-KhWq7uHxc3y8owSnPVWMZtL5iWbJTESMJBSk1p0zAz0tLueskodLQfoKE90FbQtlgx0BpqCzVHF_u95e7n1qasprCNvpxURDZSEMa6nQr2KhNDStGOahPdh44_ioDaZaQm5bXaZaSAq5JRQa72iC3ffzkbVTLFtbGDi9ZkNQT3P_wLkMlsLg</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Feitosa, F.E.S.</creator><creator>Freitas Filho, A.A.</creator><creator>Gomes, J.N.V.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201709</creationdate><title>On the construction of gradient Ricci soliton warped product</title><author>Feitosa, F.E.S. ; Freitas Filho, A.A. ; Gomes, J.N.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-4e35eb63a93f91c915099a22443cf23a98b932082bd042b027627201c07c2ea93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Curvature</topic><topic>Mathematical analysis</topic><topic>Nonlinear equations</topic><topic>Obstructions</topic><topic>Ricci soliton</topic><topic>Rigidity results</topic><topic>Scalar curvature</topic><topic>Warped product</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feitosa, F.E.S.</creatorcontrib><creatorcontrib>Freitas Filho, A.A.</creatorcontrib><creatorcontrib>Gomes, J.N.V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feitosa, F.E.S.</au><au>Freitas Filho, A.A.</au><au>Gomes, J.N.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the construction of gradient Ricci soliton warped product</atitle><jtitle>Nonlinear analysis</jtitle><date>2017-09</date><risdate>2017</risdate><volume>161</volume><spage>30</spage><epage>43</epage><pages>30-43</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>In this paper we show that an expanding or steady gradient Ricci soliton warped product Bn×fFm, m&gt;1, whose warping function f reaches both maximum and minimum must be a Riemannian product. Moreover, we present a necessary and sufficient condition for constructing a gradient Ricci soliton warped product. As an application, we present a class of expanding Ricci soliton warped product having as a fiber an Einstein manifold with non-positive scalar curvature. We also discuss some obstructions to this construction, especially in the case when the base of the warped product is compact.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2017.05.013</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2017-09, Vol.161, p.30-43
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_journals_1949613389
source Elsevier ScienceDirect Journals Complete
subjects Curvature
Mathematical analysis
Nonlinear equations
Obstructions
Ricci soliton
Rigidity results
Scalar curvature
Warped product
title On the construction of gradient Ricci soliton warped product
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20construction%20of%20gradient%20Ricci%20soliton%20warped%20product&rft.jtitle=Nonlinear%20analysis&rft.au=Feitosa,%20F.E.S.&rft.date=2017-09&rft.volume=161&rft.spage=30&rft.epage=43&rft.pages=30-43&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2017.05.013&rft_dat=%3Cproquest_cross%3E1949613389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949613389&rft_id=info:pmid/&rft_els_id=S0362546X17301554&rfr_iscdi=true