On the construction of gradient Ricci soliton warped product
In this paper we show that an expanding or steady gradient Ricci soliton warped product Bn×fFm, m>1, whose warping function f reaches both maximum and minimum must be a Riemannian product. Moreover, we present a necessary and sufficient condition for constructing a gradient Ricci soliton warped p...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2017-09, Vol.161, p.30-43 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43 |
---|---|
container_issue | |
container_start_page | 30 |
container_title | Nonlinear analysis |
container_volume | 161 |
creator | Feitosa, F.E.S. Freitas Filho, A.A. Gomes, J.N.V. |
description | In this paper we show that an expanding or steady gradient Ricci soliton warped product Bn×fFm, m>1, whose warping function f reaches both maximum and minimum must be a Riemannian product. Moreover, we present a necessary and sufficient condition for constructing a gradient Ricci soliton warped product. As an application, we present a class of expanding Ricci soliton warped product having as a fiber an Einstein manifold with non-positive scalar curvature. We also discuss some obstructions to this construction, especially in the case when the base of the warped product is compact. |
doi_str_mv | 10.1016/j.na.2017.05.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1949613389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X17301554</els_id><sourcerecordid>1949613389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-4e35eb63a93f91c915099a22443cf23a98b932082bd042b027627201c07c2ea93</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3jwHPu06STXYjXqT4BYWCKHgL2WxWs9SkJqnif29KvXoamHm_mXkPoXMCNQEiLqfa65oCaWvgNRB2gGaka1nFKeGHaAZM0Io34vUYnaQ0ARQlEzN0vfI4v1tsgk85bk12weMw4reoB2d9xk_OGIdTWLtcJt86buyANzEMRXuKjka9Tvbsr87Ry93t8-KhWq7uHxc3y8owSnPVWMZtL5iWbJTESMJBSk1p0zAz0tLueskodLQfoKE90FbQtlgx0BpqCzVHF_u95e7n1qasprCNvpxURDZSEMa6nQr2KhNDStGOahPdh44_ioDaZaQm5bXaZaSAq5JRQa72iC3ffzkbVTLFtbGDi9ZkNQT3P_wLkMlsLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949613389</pqid></control><display><type>article</type><title>On the construction of gradient Ricci soliton warped product</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Feitosa, F.E.S. ; Freitas Filho, A.A. ; Gomes, J.N.V.</creator><creatorcontrib>Feitosa, F.E.S. ; Freitas Filho, A.A. ; Gomes, J.N.V.</creatorcontrib><description>In this paper we show that an expanding or steady gradient Ricci soliton warped product Bn×fFm, m>1, whose warping function f reaches both maximum and minimum must be a Riemannian product. Moreover, we present a necessary and sufficient condition for constructing a gradient Ricci soliton warped product. As an application, we present a class of expanding Ricci soliton warped product having as a fiber an Einstein manifold with non-positive scalar curvature. We also discuss some obstructions to this construction, especially in the case when the base of the warped product is compact.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2017.05.013</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Curvature ; Mathematical analysis ; Nonlinear equations ; Obstructions ; Ricci soliton ; Rigidity results ; Scalar curvature ; Warped product</subject><ispartof>Nonlinear analysis, 2017-09, Vol.161, p.30-43</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-4e35eb63a93f91c915099a22443cf23a98b932082bd042b027627201c07c2ea93</citedby><cites>FETCH-LOGICAL-c322t-4e35eb63a93f91c915099a22443cf23a98b932082bd042b027627201c07c2ea93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2017.05.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Feitosa, F.E.S.</creatorcontrib><creatorcontrib>Freitas Filho, A.A.</creatorcontrib><creatorcontrib>Gomes, J.N.V.</creatorcontrib><title>On the construction of gradient Ricci soliton warped product</title><title>Nonlinear analysis</title><description>In this paper we show that an expanding or steady gradient Ricci soliton warped product Bn×fFm, m>1, whose warping function f reaches both maximum and minimum must be a Riemannian product. Moreover, we present a necessary and sufficient condition for constructing a gradient Ricci soliton warped product. As an application, we present a class of expanding Ricci soliton warped product having as a fiber an Einstein manifold with non-positive scalar curvature. We also discuss some obstructions to this construction, especially in the case when the base of the warped product is compact.</description><subject>Curvature</subject><subject>Mathematical analysis</subject><subject>Nonlinear equations</subject><subject>Obstructions</subject><subject>Ricci soliton</subject><subject>Rigidity results</subject><subject>Scalar curvature</subject><subject>Warped product</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt3jwHPu06STXYjXqT4BYWCKHgL2WxWs9SkJqnif29KvXoamHm_mXkPoXMCNQEiLqfa65oCaWvgNRB2gGaka1nFKeGHaAZM0Io34vUYnaQ0ARQlEzN0vfI4v1tsgk85bk12weMw4reoB2d9xk_OGIdTWLtcJt86buyANzEMRXuKjka9Tvbsr87Ry93t8-KhWq7uHxc3y8owSnPVWMZtL5iWbJTESMJBSk1p0zAz0tLueskodLQfoKE90FbQtlgx0BpqCzVHF_u95e7n1qasprCNvpxURDZSEMa6nQr2KhNDStGOahPdh44_ioDaZaQm5bXaZaSAq5JRQa72iC3ffzkbVTLFtbGDi9ZkNQT3P_wLkMlsLg</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Feitosa, F.E.S.</creator><creator>Freitas Filho, A.A.</creator><creator>Gomes, J.N.V.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201709</creationdate><title>On the construction of gradient Ricci soliton warped product</title><author>Feitosa, F.E.S. ; Freitas Filho, A.A. ; Gomes, J.N.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-4e35eb63a93f91c915099a22443cf23a98b932082bd042b027627201c07c2ea93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Curvature</topic><topic>Mathematical analysis</topic><topic>Nonlinear equations</topic><topic>Obstructions</topic><topic>Ricci soliton</topic><topic>Rigidity results</topic><topic>Scalar curvature</topic><topic>Warped product</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feitosa, F.E.S.</creatorcontrib><creatorcontrib>Freitas Filho, A.A.</creatorcontrib><creatorcontrib>Gomes, J.N.V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feitosa, F.E.S.</au><au>Freitas Filho, A.A.</au><au>Gomes, J.N.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the construction of gradient Ricci soliton warped product</atitle><jtitle>Nonlinear analysis</jtitle><date>2017-09</date><risdate>2017</risdate><volume>161</volume><spage>30</spage><epage>43</epage><pages>30-43</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>In this paper we show that an expanding or steady gradient Ricci soliton warped product Bn×fFm, m>1, whose warping function f reaches both maximum and minimum must be a Riemannian product. Moreover, we present a necessary and sufficient condition for constructing a gradient Ricci soliton warped product. As an application, we present a class of expanding Ricci soliton warped product having as a fiber an Einstein manifold with non-positive scalar curvature. We also discuss some obstructions to this construction, especially in the case when the base of the warped product is compact.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2017.05.013</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2017-09, Vol.161, p.30-43 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_journals_1949613389 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Curvature Mathematical analysis Nonlinear equations Obstructions Ricci soliton Rigidity results Scalar curvature Warped product |
title | On the construction of gradient Ricci soliton warped product |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20construction%20of%20gradient%20Ricci%20soliton%20warped%20product&rft.jtitle=Nonlinear%20analysis&rft.au=Feitosa,%20F.E.S.&rft.date=2017-09&rft.volume=161&rft.spage=30&rft.epage=43&rft.pages=30-43&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2017.05.013&rft_dat=%3Cproquest_cross%3E1949613389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949613389&rft_id=info:pmid/&rft_els_id=S0362546X17301554&rfr_iscdi=true |