On the construction of gradient Ricci soliton warped product
In this paper we show that an expanding or steady gradient Ricci soliton warped product Bn×fFm, m>1, whose warping function f reaches both maximum and minimum must be a Riemannian product. Moreover, we present a necessary and sufficient condition for constructing a gradient Ricci soliton warped p...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2017-09, Vol.161, p.30-43 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we show that an expanding or steady gradient Ricci soliton warped product Bn×fFm, m>1, whose warping function f reaches both maximum and minimum must be a Riemannian product. Moreover, we present a necessary and sufficient condition for constructing a gradient Ricci soliton warped product. As an application, we present a class of expanding Ricci soliton warped product having as a fiber an Einstein manifold with non-positive scalar curvature. We also discuss some obstructions to this construction, especially in the case when the base of the warped product is compact. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2017.05.013 |