Nitrogen sequestration under long-term paddy management in soils developed on contrasting parent material
Long-term paddy management promotes nitrogen (N) sequestration, but it is unknown to what extent the properties of the parent soil modify the management-induced N sequestration in peptide-bound amino acids (AA-N). We hypothesized that paddy management effects on the storage of AA-N relate to the min...
Gespeichert in:
Veröffentlicht in: | Biology and fertility of soils 2017-11, Vol.53 (8), p.837-848 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Long-term paddy management promotes nitrogen (N) sequestration, but it is unknown to what extent the properties of the parent soil modify the management-induced N sequestration in peptide-bound amino acids (AA-N). We hypothesized that paddy management effects on the storage of AA-N relate to the mineral assembly. Hence, we determined contents and chirality of peptide-bound amino acids in paddy soils developed on contrasting parent material (Vertisols, Andosols, Alisols in Indonesia, Alisols in China, and Gleysol/Fluvisol in Italy). Adjacent non-paddy soils served as references. Selected samples were pre-extracted with dithionite–citrate–bicarbonate (DCB) to better understand the role of reactive oxide phases in AA-N storage, origin, and composition. The results showed that topsoil N and AA-N stocks were significantly larger in paddy-managed Andosols and Chinese Alisols than in their non-paddy counterparts. In other soils, however, paddy management did not cause higher proportions of N and AA-N, possibly because N fixing intercrops masked the paddy management effects on N sequestration processes. Among the different soils developed on contrasting parent material, AA-N stocks were largest in Andosols, followed by Alisols and Fluvisols, and lowest in Vertisols. The N storage in amino acid forms went along with elevated
d
-contents of bacteria-derived alanine and glutamic acid, as well as with increasing stocks of DCB-extractable Fe, Mn, and Al. Other
d
-amino acids, likely formed by racemization processes, did not vary systematically between paddy and non-paddy managed soils. Our data suggest that the presence of oxides increase the N sequestration in peptide-bound amino acids after microbial N transformations. |
---|---|
ISSN: | 0178-2762 1432-0789 |
DOI: | 10.1007/s00374-017-1223-z |