Labelling classes by sets
Let Q be an equivalence relation whose equivalence classes, denoted Q [ x ], may be proper classes. A function L defined on Field( Q ) is a labelling for Q if and only if for all x, L ( x ) is a set and L is a labelling by subsets for Q if and only if BG denotes Bernays-GOdel class-set theory with n...
Gespeichert in:
Veröffentlicht in: | Archive for mathematical logic 2005-02, Vol.44 (2), p.219-226 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Q be an equivalence relation whose equivalence classes, denoted Q [ x ], may be proper classes. A function L defined on Field( Q ) is a labelling for Q if and only if for all x, L ( x ) is a set and L is a labelling by subsets for Q if and only if BG denotes Bernays-GOdel class-set theory with neither the axiom of foundation, AF, nor the class axiom of choice, E. The following are relatively consistent with BG. (1) E is true but there is an equivalence relation with no labelling. (2) E is true and every equivalence relation has a labelling, but there is an equivalence relation with no labelling by subsets. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0933-5846 1432-0665 |
DOI: | 10.1007/s00153-004-0261-z |