Labelling classes by sets

Let Q be an equivalence relation whose equivalence classes, denoted Q [ x ], may be proper classes. A function L defined on Field( Q ) is a labelling for Q if and only if for all x, L ( x ) is a set and L is a labelling by subsets for Q if and only if BG denotes Bernays-GOdel class-set theory with n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for mathematical logic 2005-02, Vol.44 (2), p.219-226
Hauptverfasser: Marshall, M. Victoria, Schwarze, M. Gloria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Q be an equivalence relation whose equivalence classes, denoted Q [ x ], may be proper classes. A function L defined on Field( Q ) is a labelling for Q if and only if for all x, L ( x ) is a set and L is a labelling by subsets for Q if and only if BG denotes Bernays-GOdel class-set theory with neither the axiom of foundation, AF, nor the class axiom of choice, E. The following are relatively consistent with BG. (1) E is true but there is an equivalence relation with no labelling. (2) E is true and every equivalence relation has a labelling, but there is an equivalence relation with no labelling by subsets. [PUBLICATION ABSTRACT]
ISSN:0933-5846
1432-0665
DOI:10.1007/s00153-004-0261-z