Effect of microcrystalline and nanocrystals cellulose fillers in materials based on PLA matrix

The aim of this work was to compare the effects of microcrystalline cellulose (MCC) and cellulose nanocrystals (CNC) addition on the properties of PLA matrix. The CNC were obtained by acid hydrolysis of the MCC. Both MCC and CNC were separately incorporated in PLA at ratios of 3, 5 and 7 wt%. In som...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer testing 2017-08, Vol.61, p.280-288
Hauptverfasser: dos Santos, Fernanda A., Iulianelli, Gisele C.V., Tavares, Maria I.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this work was to compare the effects of microcrystalline cellulose (MCC) and cellulose nanocrystals (CNC) addition on the properties of PLA matrix. The CNC were obtained by acid hydrolysis of the MCC. Both MCC and CNC were separately incorporated in PLA at ratios of 3, 5 and 7 wt%. In some compositions, organophilic silica (R972) was added to improve the cellulose-matrix compatibility. The properties of the materials were evaluated by FTIR, XRD, NMR and mechanical tests. Functional groups and crystalline structure of MCC and CNC were determined by FTIR and XRD, respectively. NMR T1H values showed that films containing CNC presented better interfacial interaction than those containing MCC, and indicated that R972 acts as compatibilizer. MCC and CNC acted as nucleating agents for PLA crystallization and there was an improvement in the mechanical performance of materials with the addition of CNC.
ISSN:0142-9418
1873-2348
DOI:10.1016/j.polymertesting.2017.05.028