Studying the errors in the estimation of the variation of energy by the “patched-conics” model in the three-dimensional swing-by

The swing-by maneuver is a technique used to change the energy of a spacecraft by using a close approach in a celestial body. This procedure was used many times in real missions. Usually, the first approach to design this type of mission is based on the “patched-conics” model, which splits the maneu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Celestial mechanics and dynamical astronomy 2017-11, Vol.129 (3), p.269-284
Hauptverfasser: Negri, Rodolfo Batista, Prado, Antonio Fernando Bertachini de Almeida, Sukhanov, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The swing-by maneuver is a technique used to change the energy of a spacecraft by using a close approach in a celestial body. This procedure was used many times in real missions. Usually, the first approach to design this type of mission is based on the “patched-conics” model, which splits the maneuver into three “two-body dynamics.” This approach causes an error in the estimation of the energy variations, which depends on the geometry of the maneuver and the system of primaries considered. Therefore, the goal of the present paper is to study the errors caused by this approximation. The comparison of the results are made with the trajectories obtained using the more realistic restricted three-body problem, assumed here to be the “real values” for the maneuver. The results shown here describe the effects of each parameter involved in the swing-by. Some examples using bodies in the solar system are used in this part of the paper. The study is then generalized to cover different mass parameters, and its influence is analyzed to give an idea of the amount of the error expected for a given system of primaries. The results presented here may help in estimating errors in the preliminary mission analysis using the “patched-conics” approach.
ISSN:0923-2958
1572-9478
DOI:10.1007/s10569-017-9779-3