Investigation of collisional parameters for rough spheres in fluidized beds

The effect of normal restitution coefficient and friction coefficient on the hydrodynamics of a dense bubbling solid-gas fluidized bed is investigated using a two fluid model (TFM) based on our kinetic theory of granular flow (KTGF) for rotating frictional particles. A comparison between TFM simulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder technology 2017-07, Vol.316, p.256-264
Hauptverfasser: Yang, Lei, Padding, J.T. (Johan), Kuipers, J.A.M. (Hans)
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of normal restitution coefficient and friction coefficient on the hydrodynamics of a dense bubbling solid-gas fluidized bed is investigated using a two fluid model (TFM) based on our kinetic theory of granular flow (KTGF) for rotating frictional particles. A comparison between TFM simulations using the present KTGF model, and a simpler KTGF model for rapid flows of slightly frictional, nearly elastic spheres derived by Jenkins and Zhang [1], is carried out. The simulation results reveal that both the coefficient of normal restitution and friction coefficient play an important role in the homogeneity of the bubbling bed. The particle friction has a strong effect on the solids flow patterns and distribution, while the normal restitution coefficient has a relatively small effect on both. The present model also predicts a larger amount of energy dissipation caused by the inclusion of particle friction. The present KTGF model leads to better agreement with detailed discrete particle model (DPM) simulation results for the axial particle velocity profiles and solids volume fraction distribution. Energy dissipation rate of both TFM models for different normal restitution coefficients. [Display omitted] •A kinetic theory of granular flow for 3D frictional spheres is applied for dense fluidized beds.•Investigation of normal restitution coefficient and friction coefficient on bed hydrodynamics is carried out.•Comparison is made with DPM simulations and a simpler kinetic theory.
ISSN:0032-5910
1873-328X
DOI:10.1016/j.powtec.2016.12.090