Subnormal subgroups in free groups, their growth and cogrowth

In this paper, the author (1) compare subnormal closures of finite sets in a free group F; (2) obtains the limit for the series of subnormal closures of a single element in F; (3) proves that the exponential growth rate (exp.g.r.) $\lim_{n\to \infty}\sqrt[n]{g_H(n)}$ , where gH (n) is the growth fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2017-11, Vol.163 (3), p.499-531
1. Verfasser: OLSHANSKII, A. YU
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the author (1) compare subnormal closures of finite sets in a free group F; (2) obtains the limit for the series of subnormal closures of a single element in F; (3) proves that the exponential growth rate (exp.g.r.) $\lim_{n\to \infty}\sqrt[n]{g_H(n)}$ , where gH (n) is the growth function of a subgroup H with respect to a finite free basis of F, exists for any subgroup H of the free group F; (4) gives sharp estimates from below for the exp.g.r. of subnormal subgroups in free groups; and (5) finds the cogrowth of the subnormal closures of free generators.
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004117000081