Lower Semicontinuous Regularization for Vector-Valued Mappings
The paper is devoted to studying the lower semicontinuity of vector-valued mappings. The main object under consideration is the lower limit. We first introduce a new definition of an adequate concept of lower and upper level sets and establish some of their topological and geometrical properties. A...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2006-06, Vol.35 (2), p.283-309 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper is devoted to studying the lower semicontinuity of vector-valued mappings. The main object under consideration is the lower limit. We first introduce a new definition of an adequate concept of lower and upper level sets and establish some of their topological and geometrical properties. A characterization of semicontinuity for vector-valued mappings is thereafter presented. Then, we define a concept of vector lower limit, proving its lower semicontinuity, and furnishing in this way a concept of lower semicontinuous regularization for mappings taking their values in a complete lattice. The results obtained in the present work subsume the standard ones when the target space is finite dimensional. In particular, we recapture the scalar case with a new flexible proof. In addition, extensions of usual operations of lower and upper limits for vector-valued mappings are explored. The main result is finally applied to obtain a continuous D.C. decomposition of continuous D.C. mappings. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0925-5001 1573-2916 |
DOI: | 10.1007/s10898-005-3839-z |