Equivalent formulations and necessary optimality conditions for the Lennard-Jones problem

The minimization of molecular potential energy functions is one of the most challenging, unsolved nonconvex global optimization problems and plays an important role in the determination of stable states of certain classes of molecular clusters and proteins. In this paper, some equivalent formulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2002-01, Vol.22 (1-4), p.97
Hauptverfasser: Hong-xuan, Huang, Pardalos, Panos M, Zuo-jun, Shen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The minimization of molecular potential energy functions is one of the most challenging, unsolved nonconvex global optimization problems and plays an important role in the determination of stable states of certain classes of molecular clusters and proteins. In this paper, some equivalent formulations and necessary optimality conditions for the minimization of the Lennard-Jones potential energy function are presented. A new strategy, the code partition algorithm, which is based on a bilevel optimization formulation, is proposed for searching for an extremal Lennard-Jones code. The convergence of the code partition algorithm is proved and some computational results are reported.
ISSN:0925-5001
1573-2916
DOI:10.1023/A:1013894710280