Steiner trees for fixed orientation metrics
We consider the problem of constructing Steiner minimum trees for a metric defined by a polygonal unit circle (corresponding to σ ≥ 2 weighted legal orientations in the plane). A linear-time algorithm to enumerate all angle configurations for degree three Steiner points is given. We provide a simpl...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2009, Vol.43 (1), p.141-169 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem of constructing Steiner minimum trees for a metric defined by a polygonal unit circle (corresponding to
σ
≥ 2 weighted legal orientations in the plane). A linear-time algorithm to enumerate all angle configurations for degree three Steiner points is given. We provide a simple proof that the angle configuration for a Steiner point extends to all Steiner points in a full Steiner minimum tree, such that at most six orientations suffice for edges in a full Steiner minimum tree. We show that the concept of canonical forms originally introduced for the uniform orientation metric generalises to the fixed orientation metric. Finally, we give an
O
(
σ
n
) time algorithm to compute a Steiner minimum tree for a given full Steiner topology with
n
terminal leaves. |
---|---|
ISSN: | 0925-5001 1573-2916 |
DOI: | 10.1007/s10898-008-9305-y |