Steiner trees for fixed orientation metrics

We consider the problem of constructing Steiner minimum trees for a metric defined by a polygonal unit circle (corresponding to σ  ≥ 2 weighted legal orientations in the plane). A linear-time algorithm to enumerate all angle configurations for degree three Steiner points is given. We provide a simpl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2009, Vol.43 (1), p.141-169
Hauptverfasser: Brazil, M., Zachariasen, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of constructing Steiner minimum trees for a metric defined by a polygonal unit circle (corresponding to σ  ≥ 2 weighted legal orientations in the plane). A linear-time algorithm to enumerate all angle configurations for degree three Steiner points is given. We provide a simple proof that the angle configuration for a Steiner point extends to all Steiner points in a full Steiner minimum tree, such that at most six orientations suffice for edges in a full Steiner minimum tree. We show that the concept of canonical forms originally introduced for the uniform orientation metric generalises to the fixed orientation metric. Finally, we give an O ( σ n ) time algorithm to compute a Steiner minimum tree for a given full Steiner topology with n terminal leaves.
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-008-9305-y