New bounds on the unconstrained quadratic integer programming problem

We consider the maximization = max{xTAx : x {1, 1}n} for a given symmetric A Rnn. It was shown recently, using properties of zonotopes and hyperplane arrangements, that in the special case that A has a small rank, so that A = VV T where V Rnm with m < n, then there exists a polynomial time algori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2007-12, Vol.39 (4), p.543-554
Hauptverfasser: Halikias, G. D., Jaimoukha, I. M., Malik, U., Gungah, S. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the maximization = max{xTAx : x {1, 1}n} for a given symmetric A Rnn. It was shown recently, using properties of zonotopes and hyperplane arrangements, that in the special case that A has a small rank, so that A = VV T where V Rnm with m < n, then there exists a polynomial time algorithm (polynomial in n for a given m) to solve the problem max{xT VV T x : x {1, 1}n}. In this paper, we use this result, as well as a spectral decomposition of A to obtain a sequence of non-increasing upper bounds on with no constraints on the rank of A. We also give easily computable necessary and sufcient conditions for the absence of a gap between the solution and its upper bound. Finally, we incorporate the semidenite relaxation upper bound into our scheme and give an illustrative example. [PUBLICATION ABSTRACT]
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-007-9155-z