Approximation of the distribution of convergence times for stochastic global optimisation

How long should we run a stochastic global optimisation algorithm such as simulated annealing? How should we tune such an algorithm? This paper proposes an approach to the study of these questions through successive approximation of a generic stochastic global optimisation algorithm with a sequence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2002-01, Vol.22 (1-4), p.271
Hauptverfasser: Wood, G R, Alexander, D L J, Bulger, D W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:How long should we run a stochastic global optimisation algorithm such as simulated annealing? How should we tune such an algorithm? This paper proposes an approach to the study of these questions through successive approximation of a generic stochastic global optimisation algorithm with a sequence of stochastic processes, culminating in a backtracking adaptive search process. Our emerging understanding of backtracking adaptive search can thus be used to study the original algorithm. The first approximation, the averaged range process, has the same expected number of iterations to convergence as the original process.
ISSN:0925-5001
1573-2916
DOI:10.1023/A:1013823616640