Set Containment Characterization

Characterization of the containment of a polyhedral set in a closed halfspace, a key factor in generating knowledge-based support vector machine classifiers [7], is extended to the following: (i) containment of one polyhedral set in another; (ii) containment of a polyhedral set in a reverse-convex s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2002-12, Vol.24 (4), p.473
1. Verfasser: Mangasarian, O L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Characterization of the containment of a polyhedral set in a closed halfspace, a key factor in generating knowledge-based support vector machine classifiers [7], is extended to the following: (i) containment of one polyhedral set in another; (ii) containment of a polyhedral set in a reverse-convex set defined by convex quadratic constraints; (iii) Containment of a general closed convex set, defined by convex constraints, in a reverse-convex set defined by convex nonlinear constraints. The first two characterizations can be determined in polynomial time by solving m linear programs for (i) and m convex quadratic programs for (ii), where m is the number of constraints defining the containing set. In (iii), m convex programs need to be solved in order to verify the characterization, where again m is the number of constraints defining the containing set. All polyhedral sets, like the knowledge sets of support vector machine classifiers, are characterized by the intersection of a finite number of closed halfspaces.
ISSN:0925-5001
1573-2916
DOI:10.1023/A:1021207718605