k-Plane Clustering

A finite new algorithm is proposed for clustering m given points in n-dimensional real space into k clusters by generating k planes that constitute a local solution to the nonconvex problem of minimizing the sum of squares of the 2-norm distances between each point and a nearest plane. The key to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2000-01, Vol.16 (1), p.23
Hauptverfasser: Bradley, P S, Mangasarian, O L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A finite new algorithm is proposed for clustering m given points in n-dimensional real space into k clusters by generating k planes that constitute a local solution to the nonconvex problem of minimizing the sum of squares of the 2-norm distances between each point and a nearest plane. The key to the algorithm lies in a formulation that generates a plane in n-dimensional space that minimizes the sum of the squares of the 2-norm distances to each of m1 given points in the space. The plane is generated by an eigenvector corresponding to a smallest eigenvalue of an n × n simple matrix derived from the m1 points. The algorithm was tested on the publicly available Wisconsin Breast Prognosis Cancer database to generate well separated patient survival curves. In contrast, the k-mean algorithm did not generate such well-separated survival curves.
ISSN:0925-5001
1573-2916
DOI:10.1023/A:1008324625522