k-Plane Clustering
A finite new algorithm is proposed for clustering m given points in n-dimensional real space into k clusters by generating k planes that constitute a local solution to the nonconvex problem of minimizing the sum of squares of the 2-norm distances between each point and a nearest plane. The key to th...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2000-01, Vol.16 (1), p.23 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A finite new algorithm is proposed for clustering m given points in n-dimensional real space into k clusters by generating k planes that constitute a local solution to the nonconvex problem of minimizing the sum of squares of the 2-norm distances between each point and a nearest plane. The key to the algorithm lies in a formulation that generates a plane in n-dimensional space that minimizes the sum of the squares of the 2-norm distances to each of m1 given points in the space. The plane is generated by an eigenvector corresponding to a smallest eigenvalue of an n × n simple matrix derived from the m1 points. The algorithm was tested on the publicly available Wisconsin Breast Prognosis Cancer database to generate well separated patient survival curves. In contrast, the k-mean algorithm did not generate such well-separated survival curves. |
---|---|
ISSN: | 0925-5001 1573-2916 |
DOI: | 10.1023/A:1008324625522 |