Synergistically catalysed pyrolysis of hydroxyl terminated polybutadiene binder in composite propellants and burn rate enhancement by free-standing CuO nanoparticles

Free-standing nanoparticles are a ubiquitous requirement for high-efficiency catalytic applications. Here, we report the catalytic pyrolysis of hydroxyl terminated polybutadiene (HTPB) binder in composite propellant by free-standing CuO nanoparticles synthesized through a novel aqueous thermolysis s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2017-08, Vol.182, p.28-35
Hauptverfasser: Chatragadda, Kranthi, Vargeese, Anuj A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Free-standing nanoparticles are a ubiquitous requirement for high-efficiency catalytic applications. Here, we report the catalytic pyrolysis of hydroxyl terminated polybutadiene (HTPB) binder in composite propellant by free-standing CuO nanoparticles synthesized through a novel aqueous thermolysis synthetic route. The formation mechanism of CuO nanocatalyst and the reactions between precursors were followed up by analyzing the thermal events occurred and residual analysis. Composite solid propellant samples were prepared with 0.5%, 1% and 2% CuO nanocatalyst and the catalytic pyrolysis as well as burn rate studies were conducted. By the addition of 2% nanocatalyst, complete pyrolysis of the HTPB binder occurs and the burn rate increases by > 6% at ambient pressure. The catalytic effect of the CuO nanocatalyst on the high-temperature decomposition products of AP resulting in the formation of reactive intermediates and subsequent synergistic effect leads to the complete pyrolysis of the binder leading to the increase in the propellant burn rate.
ISSN:0010-2180
1556-2921
DOI:10.1016/j.combustflame.2017.04.007