Defining yield goals and management zones to minimize yield and nitrogen and phosphorus fertilizer recommendation errors

Three general approaches (minimize soil nutrient variability, yield, and fertilizer recommendation errors) have been used to assess nutrient management zone boundaries. The objective of this study was to determine the influence of different approaches to define management zones and yield goals on mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agronomy journal 2004-05, Vol.96 (3), p.825-831
Hauptverfasser: Chang, J.Y, Clay, D.E, Carlson, C.G, Reese, C.L, Clay, S.A, Ellsbury, M.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three general approaches (minimize soil nutrient variability, yield, and fertilizer recommendation errors) have been used to assess nutrient management zone boundaries. The objective of this study was to determine the influence of different approaches to define management zones and yield goals on minimizing yield variability and fertilizer recommendation errors. This study used soil nutrient and yield information collected from two east-central South Dakota fields between 1995 and 2000. The crop rotation was corn (Zea mays L.) followed by soybean Glycine max (L.) Merr.. The four management zone delineation approaches tested were to: (i) sample areas impacted by old homesteads separately from the rest of the field; (ii) separate the field into grid cells; (iii) use geographic information systems or cluster analysis of apparent electrical conductivity, elevation, aspect, and connectedness to identify zones; and (iv) use the Order 1 soil survey. South Dakota fertilizer N and P recommendations were used to calculate fertilizer requirements. This study showed that management zones based on a 4-ha grid cell and an Order 1 soil survey had lower within-zone yield variability than the other methods tested. The best approaches for minimizing recommendation errors were nutrient specific. Nitrogen and P recommendations were improved using multiple years of yield monitor data to develop landscape-specific yield goals, sampling old homesteads separately from the rest of the field, and grid cell soil sampling to fine-tune N and P recommendations.
ISSN:0002-1962
1435-0645
DOI:10.2134/agronj2004.0825