A magneto-viscoelasticity problem with a singular memory kernel
The existence of solutions to a one-dimensional problem arising in magneto-viscoelasticity is here considered. Specifically, a non-linear system of integro-differential equations is analysed; it is obtained coupling an integro-differential equation modelling the viscoelastic behaviour, in which the...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis: real world applications 2017-06, Vol.35, p.200-210 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The existence of solutions to a one-dimensional problem arising in magneto-viscoelasticity is here considered. Specifically, a non-linear system of integro-differential equations is analysed; it is obtained coupling an integro-differential equation modelling the viscoelastic behaviour, in which the kernel represents the relaxation function, with the non-linear partial differential equations modelling the presence of a magnetic field. The case under investigation generalizes a previous study since the relaxation function is allowed to be unbounded at the origin, provided it belongs to L1; the magnetic model equation adopted, as in the previous results (Carillo et al., 2011, 2012; Chipot et al. 2008, 2009) is the penalized Ginzburg–Landau magnetic evolution equation. |
---|---|
ISSN: | 1468-1218 1878-5719 |
DOI: | 10.1016/j.nonrwa.2016.10.014 |