A magneto-viscoelasticity problem with a singular memory kernel

The existence of solutions to a one-dimensional problem arising in magneto-viscoelasticity is here considered. Specifically, a non-linear system of integro-differential equations is analysed; it is obtained coupling an integro-differential equation modelling the viscoelastic behaviour, in which the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis: real world applications 2017-06, Vol.35, p.200-210
Hauptverfasser: Carillo, Sandra, Chipot, Michel, Valente, Vanda, Vergara Caffarelli, Giorgio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The existence of solutions to a one-dimensional problem arising in magneto-viscoelasticity is here considered. Specifically, a non-linear system of integro-differential equations is analysed; it is obtained coupling an integro-differential equation modelling the viscoelastic behaviour, in which the kernel represents the relaxation function, with the non-linear partial differential equations modelling the presence of a magnetic field. The case under investigation generalizes a previous study since the relaxation function is allowed to be unbounded at the origin, provided it belongs to L1; the magnetic model equation adopted, as in the previous results (Carillo et al., 2011, 2012; Chipot et al. 2008, 2009) is the penalized Ginzburg–Landau magnetic evolution equation.
ISSN:1468-1218
1878-5719
DOI:10.1016/j.nonrwa.2016.10.014