New Definitions of Continuity
We classify all generalized A-differences of any order n ≥ 0 for which A-continuity at x implies ordinary continuity at x. We show that the only A-continuities that are equivalent to ordinary continuity at x correspond to the limits of the form limh →0A[f(x+rh)+f(x-rh)-2f(x)]+B[f(x+sh)-f(x-sh)], wit...
Gespeichert in:
Veröffentlicht in: | Real analysis exchange 2015, Vol.40 (2), p.403 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We classify all generalized A-differences of any order n ≥ 0 for which A-continuity at x implies ordinary continuity at x. We show that the only A-continuities that are equivalent to ordinary continuity at x correspond to the limits of the form limh →0A[f(x+rh)+f(x-rh)-2f(x)]+B[f(x+sh)-f(x-sh)], with ABrs ≠ 0. All other A-continuities truly generalize ordinary continuity. |
---|---|
ISSN: | 0147-1937 1930-1219 |
DOI: | 10.14321/realanalexch.40.2.0403 |