New Definitions of Continuity

We classify all generalized A-differences of any order n ≥ 0 for which A-continuity at x implies ordinary continuity at x. We show that the only A-continuities that are equivalent to ordinary continuity at x correspond to the limits of the form limh →0A[f(x+rh)+f(x-rh)-2f(x)]+B[f(x+sh)-f(x-sh)], wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Real analysis exchange 2015, Vol.40 (2), p.403
Hauptverfasser: Ash, Arlene, Ash, J Marshall, Catoiu, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We classify all generalized A-differences of any order n ≥ 0 for which A-continuity at x implies ordinary continuity at x. We show that the only A-continuities that are equivalent to ordinary continuity at x correspond to the limits of the form limh →0A[f(x+rh)+f(x-rh)-2f(x)]+B[f(x+sh)-f(x-sh)], with ABrs ≠ 0. All other A-continuities truly generalize ordinary continuity.
ISSN:0147-1937
1930-1219
DOI:10.14321/realanalexch.40.2.0403