Decoupling and Decomposition Analysis of Carbon Emissions from Electric Output in the United States

The rapid growth of the electricity sector in the United States has been accompanied by a dramatic rise in CO2 emissions. To understand the driving effects that contribute to the increase in CO2 emissions during electricity generation, as well as the relationship between the emissions and electricit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2017-05, Vol.9 (6), p.886
Hauptverfasser: Jiang, Xue-Ting, Li, Rongrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rapid growth of the electricity sector in the United States has been accompanied by a dramatic rise in CO2 emissions. To understand the driving effects that contribute to the increase in CO2 emissions during electricity generation, as well as the relationship between the emissions and electricity output, a novel decoupling index on the basis of the multilevel logarithmic mean divisia index (LMDI) method is presented in this paper. The results of our study indicate that, on the one hand, the electricity output effect played a crucial role in increasing CO2 emissions. On the other hand, the energy mix effect and the conversion efficiency effect made a contribution to curbing the related CO2 emissions in most of the years covered by our study. The power production structure effect and emission factor effect each played a negative role in the decoupling process. No decoupling was the main status during most of the years covered in our study, with a strong decoupling status being the least common state.
ISSN:2071-1050
2071-1050
DOI:10.3390/su9060886