Comments on ‘On Hadamard powers of polynomials’
Let f ( x ) = a n x n + a n - 1 x n - 1 + ⋯ + a 1 x + a 0 be a polynomial with real positive coefficients and p ∈ R . The p th Hadamard power of f is the polynomial f [ p ] ( x ) : = a n p x n + a n - 1 p x n - 1 + ⋯ + a 1 p x + a 0 p . We give sufficient conditions for f [ p ] to be a Hurwitz polyn...
Gespeichert in:
Veröffentlicht in: | Mathematics of control, signals, and systems signals, and systems, 2017-09, Vol.29 (3), p.1, Article 16 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
f
(
x
)
=
a
n
x
n
+
a
n
-
1
x
n
-
1
+
⋯
+
a
1
x
+
a
0
be a polynomial with real positive coefficients and
p
∈
R
. The
p
th Hadamard power of
f
is the polynomial
f
[
p
]
(
x
)
:
=
a
n
p
x
n
+
a
n
-
1
p
x
n
-
1
+
⋯
+
a
1
p
x
+
a
0
p
. We give sufficient conditions for
f
[
p
]
to be a Hurwitz polynomial (i.e., to be a stable polynomial) for all
p
>
p
0
or
p
<
p
1
with some positive
p
0
and negative
p
1
(without any assumption about stability of
f
). Theorem 5 by Gregor and Tišer (Math Control Signals Syst 11:372–378,
1998
) asserts that if
f
is a stable polynomial with positive coefficients then
f
[
p
]
is stable for every
p
≥
1
. We construct a counterexample to this statement. |
---|---|
ISSN: | 0932-4194 1435-568X |
DOI: | 10.1007/s00498-017-0202-0 |