Refined and Microlocal Kakeya–Nikodym Bounds of Eigenfunctions in Higher Dimensions
We prove a Kakeya–Nikodym bound on eigenfunctions and quasimodes, which sharpens a result of the authors (Blair and Sogge in Anal PDE 8:747–764, 2015 ) and extends it to higher dimensions. As in the prior work, the key intermediate step is to prove a microlocal version of these estimates, which invo...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2017-12, Vol.356 (2), p.501-533 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a Kakeya–Nikodym bound on eigenfunctions and quasimodes, which sharpens a result of the authors (Blair and Sogge in Anal PDE 8:747–764,
2015
) and extends it to higher dimensions. As in the prior work, the key intermediate step is to prove a microlocal version of these estimates, which involves a phase space decomposition of these modes that is essentially invariant under the bicharacteristic/geodesic flow. In a companion paper (Blair and Sogge in J Differ Geom,
2015
), it will be seen that these sharpened estimates yield improved
L
q
(
M
) bounds on eigenfunctions in the presence of nonpositive curvature when
2
<
q
<
2
(
d
+
1
)
d
-
1
. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-017-2977-8 |