Refined and Microlocal Kakeya–Nikodym Bounds of Eigenfunctions in Higher Dimensions

We prove a Kakeya–Nikodym bound on eigenfunctions and quasimodes, which sharpens a result of the authors (Blair and Sogge in Anal PDE 8:747–764, 2015 ) and extends it to higher dimensions. As in the prior work, the key intermediate step is to prove a microlocal version of these estimates, which invo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2017-12, Vol.356 (2), p.501-533
Hauptverfasser: Blair, Matthew D., Sogge, Christopher D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a Kakeya–Nikodym bound on eigenfunctions and quasimodes, which sharpens a result of the authors (Blair and Sogge in Anal PDE 8:747–764, 2015 ) and extends it to higher dimensions. As in the prior work, the key intermediate step is to prove a microlocal version of these estimates, which involves a phase space decomposition of these modes that is essentially invariant under the bicharacteristic/geodesic flow. In a companion paper (Blair and Sogge in J Differ Geom, 2015 ), it will be seen that these sharpened estimates yield improved L q ( M ) bounds on eigenfunctions in the presence of nonpositive curvature when 2 < q < 2 ( d + 1 ) d - 1 .
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-017-2977-8