Local diffusion coefficient measurements in shale using dynamic micro-computed tomography

Diffusion is an important mass transport mechanism in ultra-low permeability shale matrix and thus, characterization of shale diffusivity is of practical necessity for shale gas developments. We present a novel method for measuring bulk and local diffusion coefficients of shale core-plugs using dyna...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2017-11, Vol.207, p.312-322
Hauptverfasser: Zhang, Yulai, Mostaghimi, Peyman, Fogden, Andrew, Middleton, Jill, Sheppard, Adrian, Armstrong, Ryan T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diffusion is an important mass transport mechanism in ultra-low permeability shale matrix and thus, characterization of shale diffusivity is of practical necessity for shale gas developments. We present a novel method for measuring bulk and local diffusion coefficients of shale core-plugs using dynamic X-ray micro-computed tomography (micro-CT). Liquid diffusion experiments are conducted on a centimeter-scale shale core and a series of time-sequenced 3D micro-CT images are acquired through dynamic imaging. Local diffusion coefficients are measured numerically from the micro-CT data using a new mathematical method that allows us to evaluate the heterogeneity of shale diffusivity at the sub-core scale. The variation of local diffusion coefficients is quantified using the Dykstra Parsons method, which provides a means to quantify core-scale heterogeneity in shale samples. Although the micro-CT image data may be influenced by noise, the presented technique provides reasonable results and our validation studies provide fundamental design parameters for measuring diffusivity values from dynamic micro-CT experiments. In addition the presented method can be applied to other porous materials where diffusion occurs.
ISSN:0016-2361
1873-7153
DOI:10.1016/j.fuel.2017.06.050