Influence of 45S5 Bioglass addition on microstructure and properties of ultrafine grained (Mg-4Y-5.5Dy-0.5Zr) alloy
[Display omitted] •Ultrafine grained composites were formed by consolidating mechanically alloyed powders.•Mechanical properties were sensitive to the content of 45S5 Bioglass in Mg-4Y-5.5Dy-0.5Zr alloy.•Fluoride treated composites displayed superior corrosion resistance in Ringer solution.•Composit...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. B, Solid-state materials for advanced technology Solid-state materials for advanced technology, 2017-05, Vol.219, p.28-36 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•Ultrafine grained composites were formed by consolidating mechanically alloyed powders.•Mechanical properties were sensitive to the content of 45S5 Bioglass in Mg-4Y-5.5Dy-0.5Zr alloy.•Fluoride treated composites displayed superior corrosion resistance in Ringer solution.•Composites modified with MgF2 have a higher degree of biocompatibility in comparison with the unmodified reference material.
Bulk samples of an ultrafine grained (Mg-4Y-5.5Dy-0.5Zr)-x wt% 45S5 Bioglass (x=0, 5) and (Mg-4Y-5.5Dy-0.5Zr)-5 wt% 45S5 Bioglass-1 wt% Ag composites have been synthesized by consolidating mechanically alloyed powders. The influence of the chemical composition on the microstructure, mechanical properties and corrosion behavior of bulk composites were studied. The sintering of (Mg-4Y-5.5Dy-0.5Zr)-5 wt% 45S5 Bioglass powders led to the formation of a bulk composite with grain size of approx. 95nm. The corrosion behavior of Mg-based composites before and after hydrofluoric acid treatment was also investigated. The ultrafine grained (Mg-4Y-5.5Dy-0.5Zr)-5 wt% 45S5 Bioglass composite was more corrosion resistant than the bulk Mg-4Y-5.5Dy-0.5Zr alloy after HF treatment. The in vitro biocompatibility of synthesized composites was evaluated and compared with microcrystalline magnesium. Magnesium, (Mg-4Y-5.5Dy-0.5Zr)-5 wt% 45S5 Bioglass and (Mg-4Y-5.5Dy-0.5Zr)-5 wt% 45S5 Bioglass-1 wt% Ag composites modified with MgF2 have a higher degree of biocompatibility in comparison with the unmodified reference material. |
---|---|
ISSN: | 0921-5107 1873-4944 |
DOI: | 10.1016/j.mseb.2017.02.010 |