Characterization and evaluation of mechanical properties of CSEF P92 steel for varying normalizing temperature
The microstructural and mechanical properties of creep enhanced ferritic (CSEF) steels are affected by various parameters, solutionizing temperature is one of them. In the present investigation, the effect of normalizing temperature on the microstructural and mechanical properties of cast and forged...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2017-03, Vol.688, p.250-261 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The microstructural and mechanical properties of creep enhanced ferritic (CSEF) steels are affected by various parameters, solutionizing temperature is one of them. In the present investigation, the effect of normalizing temperature on the microstructural and mechanical properties of cast and forged (C&F) P92 steel were carried out. Grade P92 steel is considered as a candidate material for Thermal and Nuclear power plants at temperatures of up to 650°C. In this study, C&F P92 steel was subjected to various normalizing temperatures (from 950°C to 1150°C). For microscopic characterization, Optical microscope and Field emission scanning electron microscope (SEM) were used. The grain size, precipitate size, area fraction of precipitates and Cr/Fe were calculated from micrographs. The normalized specimens were tested for tensile strength, hardness, and toughness. Considering observation for the optimum combination of strength, ductility, and toughness, the normalizing at 1000°C and tempering at 760°C has been suggested for C&F P92 steel. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2017.02.022 |