Characterizing and reasoning about probabilistic and non-probabilistic expectation

Expectation is a central notion in probability theory. The notion of expectation also makes sense for other notions of uncertainty. We introduce a propositional logic for reasoning about expectation, where the semantics depends on the underlying representation of uncertainty. We give sound and compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the ACM 2007-06, Vol.54 (3), p.1
Hauptverfasser: Halpern, Joseph Y, Pucella, Riccardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 1
container_title Journal of the ACM
container_volume 54
creator Halpern, Joseph Y
Pucella, Riccardo
description Expectation is a central notion in probability theory. The notion of expectation also makes sense for other notions of uncertainty. We introduce a propositional logic for reasoning about expectation, where the semantics depends on the underlying representation of uncertainty. We give sound and complete axiomatizations for the logic in the case that the underlying representation is (a) probability, (b) sets of probability measures, (c) belief functions, and (d) possibility measures. We show that this logic is more expressive than the corresponding logic for reasoning about likelihood in the case of sets of probability measures, but equi-expressive in the case of probability, belief, and possibility. Finally, we show that satisfiability for these logics is NP-complete, no harder than satisfiability for propositional logic. [PUBLICATION ABSTRACT]
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_194231135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1288660311</sourcerecordid><originalsourceid>FETCH-proquest_journals_1942311353</originalsourceid><addsrcrecordid>eNqNi8sKwjAURIMoGB__UNwHkqahuC6Ka3HhrtzGqCnlpuYB4tdbixt3roYzc2ZCqFCqZKVU5ymhnPOCqUKIOVmE0A7Ic15Scqzu4EFH4-3L4i0DvGTeQHA4UuNSzHrvGmhsZ0O0ejTQIfttzbM3OkK0DldkdoUumPU3l2Sz352qw-fxSCbEunXJ4zDVYlvkUgip5F_SGxk4Qb8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194231135</pqid></control><display><type>article</type><title>Characterizing and reasoning about probabilistic and non-probabilistic expectation</title><source>ACM Digital Library Complete</source><creator>Halpern, Joseph Y ; Pucella, Riccardo</creator><creatorcontrib>Halpern, Joseph Y ; Pucella, Riccardo</creatorcontrib><description>Expectation is a central notion in probability theory. The notion of expectation also makes sense for other notions of uncertainty. We introduce a propositional logic for reasoning about expectation, where the semantics depends on the underlying representation of uncertainty. We give sound and complete axiomatizations for the logic in the case that the underlying representation is (a) probability, (b) sets of probability measures, (c) belief functions, and (d) possibility measures. We show that this logic is more expressive than the corresponding logic for reasoning about likelihood in the case of sets of probability measures, but equi-expressive in the case of probability, belief, and possibility. Finally, we show that satisfiability for these logics is NP-complete, no harder than satisfiability for propositional logic. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>CODEN: JACOAH</identifier><language>eng</language><publisher>New York: Association for Computing Machinery</publisher><subject>Expectations ; Probability ; Semantics ; Studies ; Theory</subject><ispartof>Journal of the ACM, 2007-06, Vol.54 (3), p.1</ispartof><rights>Copyright Association for Computing Machinery Jun 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Halpern, Joseph Y</creatorcontrib><creatorcontrib>Pucella, Riccardo</creatorcontrib><title>Characterizing and reasoning about probabilistic and non-probabilistic expectation</title><title>Journal of the ACM</title><description>Expectation is a central notion in probability theory. The notion of expectation also makes sense for other notions of uncertainty. We introduce a propositional logic for reasoning about expectation, where the semantics depends on the underlying representation of uncertainty. We give sound and complete axiomatizations for the logic in the case that the underlying representation is (a) probability, (b) sets of probability measures, (c) belief functions, and (d) possibility measures. We show that this logic is more expressive than the corresponding logic for reasoning about likelihood in the case of sets of probability measures, but equi-expressive in the case of probability, belief, and possibility. Finally, we show that satisfiability for these logics is NP-complete, no harder than satisfiability for propositional logic. [PUBLICATION ABSTRACT]</description><subject>Expectations</subject><subject>Probability</subject><subject>Semantics</subject><subject>Studies</subject><subject>Theory</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNi8sKwjAURIMoGB__UNwHkqahuC6Ka3HhrtzGqCnlpuYB4tdbixt3roYzc2ZCqFCqZKVU5ymhnPOCqUKIOVmE0A7Ic15Scqzu4EFH4-3L4i0DvGTeQHA4UuNSzHrvGmhsZ0O0ejTQIfttzbM3OkK0DldkdoUumPU3l2Sz352qw-fxSCbEunXJ4zDVYlvkUgip5F_SGxk4Qb8</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Halpern, Joseph Y</creator><creator>Pucella, Riccardo</creator><general>Association for Computing Machinery</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070601</creationdate><title>Characterizing and reasoning about probabilistic and non-probabilistic expectation</title><author>Halpern, Joseph Y ; Pucella, Riccardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_1942311353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Expectations</topic><topic>Probability</topic><topic>Semantics</topic><topic>Studies</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halpern, Joseph Y</creatorcontrib><creatorcontrib>Pucella, Riccardo</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halpern, Joseph Y</au><au>Pucella, Riccardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing and reasoning about probabilistic and non-probabilistic expectation</atitle><jtitle>Journal of the ACM</jtitle><date>2007-06-01</date><risdate>2007</risdate><volume>54</volume><issue>3</issue><spage>1</spage><pages>1-</pages><issn>0004-5411</issn><eissn>1557-735X</eissn><coden>JACOAH</coden><abstract>Expectation is a central notion in probability theory. The notion of expectation also makes sense for other notions of uncertainty. We introduce a propositional logic for reasoning about expectation, where the semantics depends on the underlying representation of uncertainty. We give sound and complete axiomatizations for the logic in the case that the underlying representation is (a) probability, (b) sets of probability measures, (c) belief functions, and (d) possibility measures. We show that this logic is more expressive than the corresponding logic for reasoning about likelihood in the case of sets of probability measures, but equi-expressive in the case of probability, belief, and possibility. Finally, we show that satisfiability for these logics is NP-complete, no harder than satisfiability for propositional logic. [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Association for Computing Machinery</pub></addata></record>
fulltext fulltext
identifier ISSN: 0004-5411
ispartof Journal of the ACM, 2007-06, Vol.54 (3), p.1
issn 0004-5411
1557-735X
language eng
recordid cdi_proquest_journals_194231135
source ACM Digital Library Complete
subjects Expectations
Probability
Semantics
Studies
Theory
title Characterizing and reasoning about probabilistic and non-probabilistic expectation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20and%20reasoning%20about%20probabilistic%20and%20non-probabilistic%20expectation&rft.jtitle=Journal%20of%20the%20ACM&rft.au=Halpern,%20Joseph%20Y&rft.date=2007-06-01&rft.volume=54&rft.issue=3&rft.spage=1&rft.pages=1-&rft.issn=0004-5411&rft.eissn=1557-735X&rft.coden=JACOAH&rft_id=info:doi/&rft_dat=%3Cproquest%3E1288660311%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194231135&rft_id=info:pmid/&rfr_iscdi=true