Characterizing and reasoning about probabilistic and non-probabilistic expectation
Expectation is a central notion in probability theory. The notion of expectation also makes sense for other notions of uncertainty. We introduce a propositional logic for reasoning about expectation, where the semantics depends on the underlying representation of uncertainty. We give sound and compl...
Gespeichert in:
Veröffentlicht in: | Journal of the ACM 2007-06, Vol.54 (3), p.1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Expectation is a central notion in probability theory. The notion of expectation also makes sense for other notions of uncertainty. We introduce a propositional logic for reasoning about expectation, where the semantics depends on the underlying representation of uncertainty. We give sound and complete axiomatizations for the logic in the case that the underlying representation is (a) probability, (b) sets of probability measures, (c) belief functions, and (d) possibility measures. We show that this logic is more expressive than the corresponding logic for reasoning about likelihood in the case of sets of probability measures, but equi-expressive in the case of probability, belief, and possibility. Finally, we show that satisfiability for these logics is NP-complete, no harder than satisfiability for propositional logic. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0004-5411 1557-735X |