Effect of nanosilver on metabolism in rainbow trout (Oncorhynchus mykiss): An investigation using different respirometric approaches

Nanosilver (nAg) has been incorporated into many consumer products, including clothing and washing machines, because of its antimicrobial properties. Consequently, the potential for its release into aquatic environments is of significant concern. Documented toxic effects on fish include altered gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental toxicology and chemistry 2017-10, Vol.36 (10), p.2722-2729
Hauptverfasser: Murray, Laura, Rennie, Michael D., Svendsen, Jon C., Enders, Eva C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanosilver (nAg) has been incorporated into many consumer products, including clothing and washing machines, because of its antimicrobial properties. Consequently, the potential for its release into aquatic environments is of significant concern. Documented toxic effects on fish include altered gene expression, gill damage, and impaired gas exchange, as well as mortality at high nAg concentrations. The present study reports the effects of nAg on the metabolism of rainbow trout (Oncorhynchus mykiss). Fish were exposed to environmentally relevant concentrations (0.28 ± 0.02 μg/L) and higher (47.60 ± 5.13 μg/L) for 28 d, after which their standard metabolic rate (SMR), forced maximum metabolic rate (MMRf), and spontaneous maximum metabolic rate (MMRs) were measured. There was no effect observed in SMR, MMRf, or MMRs, suggesting that nAg is unlikely to directly affect fish metabolism. On average, MMRs tended to be greater than MMRf, and most MMRs occurred when room lighting increased. The timing of MMRf chase protocols was found to affect both MMRf and SMR estimates, in that chasing fish before respirometric experiments caused higher MMRf estimates and lower SMR estimates. Although compounded effects involving nAg and other environmental stressors remain unknown, the present study indicates that the tested range of nAg is unlikely to constrain fish metabolism. Environ Toxicol Chem 2017;36:2722–2729. © 2017 SETAC
ISSN:0730-7268
1552-8618
DOI:10.1002/etc.3827