Stochastic Linear-Quadratic Control via Primal-Dual Semidefinite Programming

We study stochastic linear-quadratic (LQ) optimal control problems over an infinite time horizon, allowing the cost matrices to be indefinite. We develop a systematic approach based on semidefinite programming (SDP). A central issue is the stability of the feedback control. We show that this can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM review 2004-03, Vol.46 (1), p.87-111
Hauptverfasser: Yao, David D., Zhang, Shuzhong, Zhou, Xun Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study stochastic linear-quadratic (LQ) optimal control problems over an infinite time horizon, allowing the cost matrices to be indefinite. We develop a systematic approach based on semidefinite programming (SDP). A central issue is the stability of the feedback control. We show that this can be effectively examined through the complementary duality of the SDP. Furthermore, we establish several implication relations among the SDP complementary duality, the (generalized) Riccati equation, and the optimality of the LQ control problem. Based on these relations, we propose a numerical procedure that provides a thorough treatment of the LQ control problem via primal-dual SDP: it identifies a stabilizing feedback control that is optimal or determines that the problem possesses no optimal solution. For the latter case, we develop an ϵ-approximation scheme that is asymptotically optimal.
ISSN:0036-1445
1095-7200
DOI:10.1137/S0036144503434203