Strong Stability-Preserving High-Order Time Discretization Methods

In this paper we review and further develop a class of strong stability-preserving (SSP) high-order time discretizations for semidiscrete method of lines approximations of partial differential equations. Previously termed TVD (total variation diminishing) time discretizations, these high-order time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM review 2001-03, Vol.43 (1), p.89-112
Hauptverfasser: Gottlieb, Sigal, Shu, Chi-Wang, Tadmor, Eitan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we review and further develop a class of strong stability-preserving (SSP) high-order time discretizations for semidiscrete method of lines approximations of partial differential equations. Previously termed TVD (total variation diminishing) time discretizations, these high-order time discretization methods preserve the strong stability properties of first-order Euler time stepping and have proved very useful, especially in solving hyperbolic partial differential equations. The new developments in this paper include the construction of optimal explicit SSP linear Runge-Kutta methods, their application to the strong stability of coercive approximations, a systematic study of explicit SSP multistep methods for nonlinear problems, and the study of the SSP property of implicit Runge-Kutta and multistep methods.
ISSN:0036-1445
1095-7200
DOI:10.1137/s003614450036757x